Murphy D. Oil palm: future prospects for yield and quality improvements; 2009.
Google Scholar
Pacheco P, Gnych S, Dermawan A, Komarudin H, Okarda B. The palm oil global value chain: implications for economic growth and social and environmental sustainability. Bogor: Center for International Forestry Research (CIFOR); 2017.
Barcelos E, de Rios SA, Cunha RNV, Lopes R, Motoike SY, Babiychuk E, et al. Oil palm natural diversity and the potential for yield improvement. Front Plant Sci. 2015;6:190. https://doi.org/10.3389/fpls.2015.00190.
Article
PubMed
PubMed Central
Google Scholar
Srestasathiern P, Rakwatin P. Oil palm tree detection with high resolution multi-spectral satellite imagery. Remote Sens (Basel). 2014;6:9749–74. https://doi.org/10.3390/rs6109749.
Article
Google Scholar
Escobar R, Alvarado A. Estrategias para la producción comercial de semillas y clones de palmas de aceite compactas. Rev Palmas. 2004;25:293–305. https://publicaciones.fedepalma.org/index.php/palmas/article/view/1093.
Google Scholar
Turner PD. Oil palm diseases and disorders: Oxford University Press; 1981. https://books.google.com.co/books?id=mAnyXwAACAAJ.
Amblard P, Billotte N, Cochard B, Durand-Gasselin T, Jacquemard JC, Louise C, et al. El mejoramiento de la palma de aceite Elaeis guineensis y Elaeis oleifera por el Cirad-CP. Rev Palmas. 2002;25:306–10.
Zambrano JE. Los híbridos interespecíficos Elaeis oleífera HBK. x Elaeis guineensis Jacq. : una alternativa de renovación para la Zona Oriental de Colombia. Rev Palmas. 2004;25:339–49. http://publicaciones.fedepalma.org/index.php/palmas/article/view/1098.
Google Scholar
Chinchilla C. Toleracia y resistencia a las pudriciones del cogollo en fuentes de diferente origen de Elaeis guineensis. Rev Palmas. 2007;28:273–84.
Google Scholar
Moura J. Manejo integrado das pragas das palmeiras. Ilheus: Centro de Pesquisas do Cacau; 2017.
Google Scholar
Hartley CWS. The oil palm (Elaeis guineensis Jacq.). 2nd ed; 1967.
Google Scholar
Mayes S, Jack PL, Corley RHV, Marshall DF. Construction of a RFLP genetic linkage map for oil palm (Elaeis guineensis Jacq.). Genome. 1997;40:116–22.
Article
CAS
PubMed
Google Scholar
Purba AR, Noyer JL, Baudouin L, Perrier X, Hamon S, Lagoda PJL. A new aspect of genetic diversity of Indonesian oil palm (Elaeis guineensis Jacq.) revealed by isoenzyme and AFLP markers and its consequences for breeding. Theor Appl Genet. 2000;101:956–61. https://doi.org/10.1007/s001220051567.
Article
CAS
Google Scholar
Jeennor S, Volkaert H. Mapping of quantitative trait loci (QTLs) for oil yield using SSRs and gene-based markers in African oil palm (Elaeis guineensis Jacq.). Tree Genet Genomes. 2014;10:1–14.
Article
Google Scholar
Billotte N, Marseillac N, Risterucci A-M, Adon B, Brottier P, Baurens F-C, et al. Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet. 2005;110:754–65.
Article
CAS
PubMed
Google Scholar
Seng T-YY, Ritter E, Mohamed Saad SH, Leao L-JJ, Harminder Singh RS, Qamaruz Zaman F, et al. QTLs for oil yield components in an elite oil palm (Elaeis guineensis) cross. Euphytica. 2016;212:399–425. https://doi.org/10.1007/s10681-016-1771-6.
Article
Google Scholar
Yadav P, Vaidya E, Rani R, Yadav N, Singh B K. Rai P, et al. Recent perspective of next generation sequencing: applications in molecular plant biology and crop improvement. 2016.
Google Scholar
Le Nguyen K, Grondin A, Courtois B, Gantet P. Next-generation sequencing accelerates crop gene discovery. Trends Plant Sci. 2019;24:263–74. https://doi.org/10.1016/j.tplants.2018.11.008.
Article
CAS
PubMed
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:1–10. https://doi.org/10.1371/journal.pone.0019379.
Article
CAS
Google Scholar
Pootakham W, Jomchai N, Ruang-areerate P, Shearman JR, Sonthirod C, Sangsrakru D, et al. Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm using genotyping-by-sequencing (GBS). Genomics. 2015;105:288–95. https://doi.org/10.1016/j.ygeno.2015.02.002.
Article
CAS
PubMed
Google Scholar
Babu BK, Mathur RK, Ravichandran G, Venu MVB. Genome-wide association study (GWAS) for stem height increment in oil palm (Elaeis guineensis) germplasm using SNP markers. Tree Genet Genomes. 2019;15:1–8.
Article
Google Scholar
Huang X, Han B. Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol. 2014;65:531–51. https://doi.org/10.1146/annurev-arplant-050213-035715.
Article
CAS
PubMed
Google Scholar
Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9:29. https://doi.org/10.1186/1746-4811-9-29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burghardt LT, Young ND, Tiffin P. A guide to genome-wide association mapping in plants. Curr Protoc Plant Biol. 2017;2:22–38. https://doi.org/10.1002/cppb.20041.
Article
PubMed
Google Scholar
Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA, et al. Mixed linear model approach adapted for genome-wide association studies. Nat Genet. 2010;42:355. https://doi.org/10.1038/ng.546.
Article
CAS
PubMed
PubMed Central
Google Scholar
FAO - Trade and market division. Oilcrops. 2014. http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Oilcrops/Documents/Food_outlook_oilseeds/Food_Outlook_May_2014_OILCROPS.pdf.
Google Scholar
Kurnia JC, Jangam SV, Akhtar S, Sasmito AP, Mujumdar AS. Advances in biofuel production from oil palm and palm oil processing wastes: A review. Biofuel Res J. 2016;3:332–46. https://doi.org/10.18331/BRJ2016.3.1.3.
Article
CAS
Google Scholar
World Growth. The economic benefit of palm oil to Indonesia: World Growth Palm Oil Green Dev Campaign; 2011. February:1–27. http://worldgrowth.org/site/wp-content/uploads/2012/06/WG_Indonesian_Palm_Oil_Benefits_Report-2_11.pdf.
Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, Isobe S, et al. The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012;485:635–41.
Article
CAS
Google Scholar
Bastidas PS. Avances en el desarrollo de materiales genéticos resistentes a la PC. Rev Palmas. 2013;34:135–41.
Google Scholar
Bastidas S, Hurtado PYL. Evaluación de palmas prolíficas en la especie Elaeis oleífera e híbridos interespecíficos de E . oleífera x E . guineensis; 1993. p. 55–60.
Google Scholar
Ithnin M, Xu Y, Marjuni M, Serdari NM, Amiruddin MD, Low E-TL, et al. Multiple locus genome-wide association studies for important economic traits of oil palm. Tree Genet Genomes. 2017;13:103. https://doi.org/10.1007/s11295-017-1185-1.
Article
Google Scholar
Wickland DP, Battu G, Hudson KA, Diers BW, Hudson ME. A comparison of genotyping-by-sequencing analysis methods on low-coverage crop datasets shows advantages of a new workflow, GB-eaSy. BMC Bioinformatics. 2017;18:586. https://doi.org/10.1186/s12859-017-2000-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet. 2011;12:499–510. https://doi.org/10.1038/nrg3012.
Article
CAS
PubMed
Google Scholar
Hamilton ES, Schlegel AM, Haswell ES. United in diversity: mechanosensitive ion channels in plants. Annu Rev Plant Biol. 2015;66:113–37. https://doi.org/10.1146/annurev-arplant-043014-114700.
Article
CAS
PubMed
Google Scholar
Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse JM. Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr Biol. 2008;18:730–4.
Article
CAS
PubMed
Google Scholar
Liu Q, Wang Z, Xu X, Zhang H, Li C. Genome-wide analysis of C2H2 zinc-finger family transcription factors and their responses to abiotic stresses in poplar (Populus trichocarpa). PLoS One. 2015;10:1–25.
Google Scholar
Botella JR. Can heterotrimeric G proteins help to feed the world? Trends Plant Sci. 2012;17:563–8. https://doi.org/10.1016/j.tplants.2012.06.002.
Article
CAS
PubMed
Google Scholar
Sangaev SS, Kochetov AV, Ibragimova SS, Levenko BA, Shumny VK. Physiological role of extracellular ribonucleases of higher plants. Russ J Genet Appl Res. 2011;1:44–50. https://doi.org/10.1134/S2079059711010060.
Article
Google Scholar
Tvorus EK. Plant ribonucleases. Sov Plant Physiol. 1976;23:882–9.
Beavis W. QTL analyses: power, precision, and accuracy. In: Molecular dissection of complex traits. Chicago: American Seed Trade Association; 1998. p. 250–66.
Google Scholar
Klein RJ. Power analysis for genome-wide association studies. BMC Genet. 2007;8:58. https://doi.org/10.1186/1471-2156-8-58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong EP, Park JW. Sample size and statistical power calculation in genetic association studies. Genomics Inform. 2012;10:117–22. https://doi.org/10.5808/GI.2012.10.2.117.
Article
PubMed
PubMed Central
Google Scholar
SB P, EAP R, RR C. Genealogía del germoplasma de palma de aceite (Elaeis guineensis Jacq.) del proyecto de mejoramiento genético de Corpoica. Rev Palmas. 2003;24. https://publicaciones.fedepalma.org/index.php/palmas/article/view/950.
Corley RHV, Hardon JJ, Tan GY. Analysis of growth of the oil palm (Elaeis guineensis Jacq.) I. estimation of growth parameters and application in breeding. Euphytica. 1971;20:307–15. https://doi.org/10.1007/BF00056093.
Article
Google Scholar
Breure CJ. Factors associated with the allocation of carbohydrates to bunch dry matter production in oil palm (Elaeis guineensis Jacq.). Landbouwuniversiteit; 1987.
Google Scholar
R development core team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2008. http://www.r-project.org.
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5. https://doi.org/10.1093/bioinformatics/btm308.
Article
CAS
PubMed
Google Scholar
Singh R, Ong-Abdullah M, Low E-TL, Manaf MAA, Rosli R, Nookiah R, et al. Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature. 2013;500:335. https://doi.org/10.1038/nature12309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. https://doi.org/10.1186/gb-2009-10-3-r25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8. https://doi.org/10.1093/bioinformatics/btr330.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rambaut A. FigTree: tree figure drawing tool version 1.4.2. 2014. http://tree.bio.ed.ac.uk/software/figtree.
Google Scholar
Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28:3326–8. https://doi.org/10.1093/bioinformatics/bts606.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012;28:2397–9. https://doi.org/10.1093/bioinformatics/bts444.
Article
CAS
PubMed
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R I State Dent Soc. 1995;57:289–300.
Google Scholar