Lindley J. The vegetable kingdom. 3rd ed. London: Bradely and Evans; 1846.
Google Scholar
Angiosperm Phylogeny Group. An ordinal classification for the families of flowering plants. Ann Missouri Bot Gard. 1998;85:531–53. https://doi.org/10.2307/2992015.
Zomlefer WB, Williams NH, Whitten WM, Judd WS. Generic circumscription and relationships in the tribe Melanthieae (Liliales, Melanthiaceae), with emphasis on Zigadenus: evidence from ITS and trnL-F sequence data. Am J Bot. 2001;88:1657–69. https://doi.org/10.2307/3558411.
Article
CAS
PubMed
Google Scholar
Zomlefer WB, Judd WS, Whitten WM, Williams NH. A synopsis of Melanthiaceae (Liliales), with focus on character evolution in tribe Melanthieae. In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG, editors. Monocots: comparative biology and evolution (excluding Poales). California: Rancho Santa Ana Botanic Garden; 2006. p. 564–76.
Google Scholar
Kim JS, Hong JK, Chase MW, Fay MF, Kim JH. Familial relationships of the monocot order Liliales based on a molecular phylogenetic analysis using four plastid loci: matK, rbcL, atpB and atpF-H. Bot J Linn Soc. 2013;172:5–21. https://doi.org/10.1111/boj.12039.
Article
Google Scholar
Kim S, Kim JS, Chase MW, Chase MW, Fay MF, Kim J. Molecular phylogenetic relationships of Melanthiaceae (Liliales) based on plastid DNA sequences. Bot J Linn Soc. 2016;181:567–84. https://doi.org/10.1111/boj.12405.
Article
Google Scholar
Li H. The genus Paris (Trilliaceae). Beijing: Science Press; 1998.
Google Scholar
Ji Y, Zhou Z, Li H. Four new synonyms in the genus Paris (Trilliaceae). Acta Phytotaxon Sin. 2007;45:388–90. https://doi.org/10.1360/aps06163.
Article
Google Scholar
Yang J, Wang YH, Li H. Paris qiliangiana (Melanthiaceae), a new species from Hubei. China Phytotaxa. 2017;329:193–6.
Article
Google Scholar
Liang SY, Soukup VG. Paris L. In: Wu ZY, Raven PH, editors. Flora of China. Beijing: Science Press and Missouri Botanical Garden Press; 2000. p. 88–95.
Google Scholar
Long CL, Li H, Ouyang Z, Yang X, Li Q, Trangmar B. Strategies for agrobiodiversity conservation and promotion: a case from Yunnan. China Biodivers Conserv. 2003;12:1145–56. https://doi.org/10.1023/a:1023085922265.
Article
Google Scholar
He J, Zhang S, Wang H, Chen CX, Chen SF. Advances in studies on and uses of Paris polyphylla var. yunnanensis (Trilliaceae). Acta Bot Yunnan. 2006;28:271–6.
CAS
Google Scholar
Cunningham AB, Brinckmann JA, Bi YF, Pei SJ, Schippmann U, Luo P. Paris in the spring: a review of the trade, conservation and opportunities in the shift from wild harvest to cultivation of Paris polyphylla (Trilliaceae). J Ethnopharmacol. 2018;222:208–16. https://doi.org/10.1016/j.jep.2018.04.048.
Article
CAS
PubMed
Google Scholar
Li H, Su B, Yang Y, Zhang Z. An assessment on the rarely medical Paris plants in China with exploring the future development of its plantation. J West China For Sci. 2015;44:1–6.
Google Scholar
Wang YH, Niu HM, Zhang ZY, Hu XY, Li H. Medicinal values and their chemical bases of Paris. China J Chin Mater Med. 2015;40:833–9.
CAS
Google Scholar
Huang LQ, Xiao PG, Wang YY. Investigation on resources of rare and endangered medicinal plants in China. 1st ed. Shanghai: Science & Technology Press; 2012.
Google Scholar
Hara H. Variation in Paris polyphylla smith, with reference to other Asiatic species. J Fac Sci Univ Tokyo. 1969;10:141–80.
Google Scholar
Linnaeus C. Species plantarum. Stockholm: Salvius; 1753.
Google Scholar
Franchet A. Monographie du genere Paris. Mem Soc Philom Centen. 1888;24:267–91.
Google Scholar
Takhtajan A. A revision of Daiswa (Trilliaceae). Brittonia. 1983;35:255–70.
Article
Google Scholar
Ji Y, Fritsch PW, Li H, Xiao TJ, Zhou ZK. Phylogeny and classification of Paris (Melanthiaceae) inferred from DNA sequence data. Ann Bot. 2006;98:245–56. https://doi.org/10.1046/j.1365-2885.2002.00426.x.
Article
CAS
PubMed
Google Scholar
Kato H, Terauchi R, Utech FH, Kawano S. Molecular systematics of the Trilliaceae sensu lato as inferred from rbcL sequence data. Mol Phylogenet Evol. 1995;4:184–93. https://doi.org/10.1006/mpev.1995.1018.
Article
CAS
PubMed
Google Scholar
Osaloo SK, Kawano S. Molecular systematics of Trilliaceae II. Phylogenetic analyses of Trillium and its allies using sequences of rbcL and matK genes of cpDNA and internal transcribed spacers of 18S–26S nrDNA. Plant Species Bio. 1999;14:75–94. https://doi.org/10.1046/j.1442-1984.1999.00009.x.
Article
Google Scholar
Farmer SB, Schilling EE. Phylogenetic analyses of Trilliaceae based on morphological and molecular data. Syst Bot. 2002;27:674–92. https://doi.org/10.2307/3093915.
Rieseberg LH, Soltis DE. Phylogenetic consequences of cytoplasmic gene flow in plants. Evol Trends Plant. 1991;5:64–84. https://doi.org/10.1007/BF00021248.
Article
Google Scholar
Rokas A, Carroll SB. More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Mol Biol Evol. 2005;22:1337–44. https://doi.org/10.1093/molbev/msi121.
Article
CAS
PubMed
Google Scholar
Whitfield JB, Lockhart PJ. Deciphering ancient rapid radiations. Trends Ecol Evol. 2007;22:258–65. https://doi.org/10.1016/j.tree.2007.01.012.
Article
Google Scholar
Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Wörheide G, et al. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol. 2011;9:e1000602. https://doi.org/10.1371/journal.pbio.1000602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun M, Soltis DE, Soltis PS, Zhu X, Burleigh JG, Chen Z. Deep phylogenetic incongruence in the angiosperm Rosidae clade. Mol Phylogenet Evol. 2015;83:156–66. https://doi.org/10.1016/j.ympev.2014.11.003.
Article
PubMed
Google Scholar
Jansen RK, Cai Z, Raubeson LA, Daniell H, de Pamphilis CW, Leebens-Mack J, et al. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. PNAS. 2007;104:19369–74. https://doi.org/10.1073/pnas.0709121104.
Article
CAS
Google Scholar
Moore MJ, Bell CD, Soltis PS, Soltis DE. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci. 2007;104:19363–8. https://doi.org/10.1073/pnas.0708072104.
Article
Google Scholar
Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci. 2010;107:4623–8. https://doi.org/10.1073/pnas.0907801107.
Article
CAS
Google Scholar
Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C, Boury-Esnault N, et al. Phylogenomics revives traditional views on deep animal relationships. Curr Biol. 2009;19:706–12. https://doi.org/10.1016/j.cub.2009.02.052.
Article
CAS
PubMed
Google Scholar
Zhou X, Xu S, Xu J, Chen B, Zhou K, Yang G. Phylogenomic analysis resolves the interordinal relationships and rapid diversification of the Laurasiatherian mammals. Syst Biol. 2012;61:150–64. https://doi.org/10.2307/41515183.
Mckain MR, Johnson MG, Uribe-Convers S, Eaton D, Yang Y. Practical considerations for plant phylogenomics. Appl Plant Sci. 2018;6:e1028. https://doi.org/10.1002/aps3.1038.
Article
Google Scholar
Parks M, Cronn R, Liston A. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol. 2009;7:84. https://doi.org/10.1186/1741-7007-7-84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barrett CF, Specht CD, Leebens-Mack J, Stevenson DW, Zomlefer WB, Davis JI. Resolving ancient radiations: can complete plastid gene sets elucidate deep relationships among the tropical gingers (Zingiberales)? Ann Bot. 2014;113:119–33. https://doi.org/10.1093/aob/mct264.
Article
PubMed
Google Scholar
Ma PF, Zhang YX, Zeng CX, Guo ZH, Li DZ. Chloroplast phylogenomic analyses resolve deep-level relationships of an intractable bamboo tribe Arundinarieae (Poaceae). Syst Biol. 2014;63:933–50. https://doi.org/10.1093/sysbio/syu054.
Article
PubMed
Google Scholar
Stull GW, Dunod SR, Soltis DE, Soltis PS. Resolving basal lamiid phylogeny and the circumscription of Icacinaceae with a plastome-scale data set. Am J Bot. 2015;102:1794–813. https://doi.org/10.3732/ajb.1500298.
Article
CAS
PubMed
Google Scholar
Attigala L, Wysocki WP, Duvall MR, Clark LG. Phylogenetic estimation and morphological evolution of Arundinarieae (Bambusoideae: Poaceae) based on plastome phylogenomic analysis. Mol Phylogenet Evol. 2016;101:111–21. https://doi.org/10.1016/j.ympev.2016.05.008.
Article
PubMed
Google Scholar
Zhang SD, Jin JJ, Chen SY, Chase MW, Soltis DE, Li HT, et al. Diversification of Rosaceae since the late cretaceous based on plastid phylogenomics. New Phytol. 2017;214:1355–67. https://doi.org/10.1111/nph.14461.
Article
CAS
PubMed
Google Scholar
Carlsen MM, Fér T, Schmickl R, Leong-Škorničková J, Newman M, Kress WJ. Resolving the rapid plant radiation of early diverging lineages in the tropical Zingiberales: pushing the limits of genomic data. Mol Phylogenet Evol. 2018;128:55–68. https://doi.org/10.1016/j.ympev.2018.07.020.
Article
PubMed
Google Scholar
Lin HY, Hao YJ, Li JH, Fu CX, Soltis PS, Soltis DE, et al. Phylogenomic conflict resulting from ancient introgression following species diversification in Stewartia s.l. (Theaceae). Mol Phylogenet Evol. 2019;135:1–11. https://doi.org/10.1016/j.ympev.2019.02.018.
Article
PubMed
Google Scholar
Huang Y, Li X, Yang Z, Yang C, Yang J, Ji Y. Analysis of complete chloroplast genome sequences improves phylogenetic resolution of Paris (Melanthiaceae). Front Plant Sci. 2016;7:1797. https://doi.org/10.3389/fpls.2016.01797.
Article
PubMed
PubMed Central
Google Scholar
Yang L, Yang Z, Liu C, He Z, Zhang Z, Yang J, et al. Chloroplast phylogenomic analysis provides insights into the evolution of the largest eukaryotic genome holder, Paris japonica (Melanthiaceae). BMC Plant Biol. 2019;19:293. https://doi.org/10.1186/s12870-019-1879-7.
Article
PubMed
PubMed Central
Google Scholar
Linder CR, Goertzen LR, Heuvel BV, Francisco-Ortega J, Jansen RK. The complete external transcribed spacer of 18S-26S rDNA: amplification and phylogenetic utility at low taxonomic levels in Asteraceae and closely allied families. Mol Phylogenet Evol. 2000;14:285–303. https://doi.org/10.1006/mpev.1999.0706.
Article
CAS
PubMed
Google Scholar
Straub SC, Parks M, Weitemier K, Fishbein M, Cronn RC, Liston A. Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics. Am J Bot. 2012;99:349–64. https://doi.org/10.3732/ajb.1100335.
Article
CAS
PubMed
Google Scholar
Bock DG, Kane NC, Ebert DP, Rieseberg LH. Genome skimming reveals the origin of the Jerusalem artichoke tuber crop species: neither from Jerusalem nor an artichoke. New Phytol. 2014;201:1021–30. https://doi.org/10.1111/nph.12560.
Article
CAS
PubMed
Google Scholar
Hollingsworth PM, Li DZ, Michelle VDB, Twyford AD. Telling plant species apart with DNA: from barcodes to genomes. Philos Trans R Soc B. 2016;371:20150338. https://doi.org/10.1098/rstb.2015.0338.
Article
CAS
Google Scholar
Zeng CX, Hollingsworth PM, Yang J, He ZS, Zhang ZR, Li DZ, et al. Genome skimming herbarium specimens for DNA barcoding and phylogenomics. Plant Methods. 2018;14:43. https://doi.org/10.1186/s13007-018-0300-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simpson MG, Guilliams CM, Hasenstab-Lehman KE, Mabry ME, Ripma L. Phylogeny of the popcorn flowers: use of genome skimming to evaluate monophyly and interrelationships in subtribe Amsinckiinae (Boraginaceae). Taxon. 2017;66:1406–20. https://doi.org/10.12705/666.8.
Article
Google Scholar
Vargas OM, Ortiz EM, Simpson BB. Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: Diplostephium). New Phytol. 2017;214:1736–50. https://doi.org/10.1111/nph.14530.
Article
CAS
PubMed
Google Scholar
Uribe-Convers S, Carlsen MM, Lagomarsino LP, Muchhala N. Phylogenetic relationships of Burmeistera (Campanulaceae: Lobelioideae): combining whole plastome with targeted loci data in a recent radiation. Mol Phylogenet Evol. 2017;107:551–63. https://doi.org/10.1016/j.ympev.2016.12.011.
Article
PubMed
Google Scholar
Fonseca LHM, Lúcia GL. Combining high-throughput sequencing and targeted loci data to infer the phylogeny of the “Adenocalymma-Neojobertia” clade (Bignonieae, Bignoniaceae). Mol Phylogenet Evol. 2018;123:1–15. https://doi.org/10.1016/j.ympev.2018.01.023.
Article
CAS
PubMed
Google Scholar
Heckenhauer J, Paun O, Chase MW, Ashton PS, Kamariah AS, Samuel R. Molecular phylogenomics of the tribe Shoreeae (Dipterocarpaceae) using whole plastid genomes. Ann Bot. 2019;20:1–9. https://doi.org/10.1093/aob/mcy220.
Article
Google Scholar
Bruun-Lund S, Clement WL, Kjellberg F, Rønsted N. First plastid phylogenomic study reveals potential cyto-nuclear discordance in the evolutionary history of Ficus L. (Moraceae). Mol Phylogenet Evol. 2017;109:93–104. https://doi.org/10.1016/j.ympev.2016.12.031.
Article
PubMed
Google Scholar
Gitzendanner MA, Yang Y, Wickett NJ, Mckain M, Beaulieu JM. Methods for exploring the plant tree of life. Appl Plant Sci. 2018;6:e1309. https://doi.org/10.1002/aps3.1039.
Article
Google Scholar
Liu SH, Edwards CE, Hoch PC, Raven PH, Barber JC. Genome skimming provides new insight into the relationships in Ludwigia section Macrocarpon, a polyploid complex. Am J Bot. 2018;105:875–87. https://doi.org/10.1002/ajb2.1086.
Article
CAS
PubMed
Google Scholar
Kim C, Kim SC, Kim JH. Historical biogeography of Melanthiaceae: a case of out-of-North America through the Bering land bridge. Front Plant Sci. 2019;10:396. https://doi.org/10.3389/fpls.2019.00396.
Article
PubMed
PubMed Central
Google Scholar
Ma ZY, Wen J, Ickert-Bond SM, Nie ZL, Chen LQ, Liu XQ. Phylogenomics, biogeography and adaptive radiation of grapes. Mol Phylogenet Evol. 2018;129:258–67. https://doi.org/10.1016/j.ympev.2018.08.021.
Article
PubMed
Google Scholar
Soltis DE, Kuzoff RK. Discordance between nuclear and chloroplast phylogenies in the Heuchera group (Saxifragaceae): evidence of chloroplast capture and paraphyly. Evolution. 1995;49:727–42. https://doi.org/10.2307/2410326.
Article
PubMed
Google Scholar
Soltis DE, Johnson LA, Looney C. Discordance between ITS and chloroplast topologies in the Boykinia group (Saxifragaceae). Syst Bot. 1996;21:169–76. https://doi.org/10.2307/2419746.
Article
Google Scholar
Philippe H, Delsuc F, Brinkmann H, Lartillot N. Phylogenomics. Annu Rev Ecol Evol Syst. 2005;36:541–62. https://doi.org/10.1146/annurev.ecolsys.35.112202.130205.
Article
Google Scholar
Wendel J, Doyle J. Phylogenetic incongruence, window into genome historyand evolution. In: Soltis D, Soltis PJD, editors. Molecular systematics of plants II DNA sequencing. New York: Kluwer Academic Press; 1998. p. 265–96.
Chapter
Google Scholar
Wiens JJ. Combining data sets with different phylogenetic histories. Syst Biol. 1998;47:568–81. https://doi.org/10.1080/106351598260581.
Article
CAS
PubMed
Google Scholar
Quicke DL, Jones OR, Epstein DR. Correcting the problem of false incongruence due to noise imbalance in the incongruence length difference test. Syst Biol. 2007;56:496–503. https://doi.org/10.1080/10635150701429974.
Article
PubMed
Google Scholar
Xiang XG, Schuiteman A, Li DZ, Huang WC, Chung SW, Li JW, et al. Molecular systematics of Dendrobium (Orchidaceae, Dendrobieae) from mainland Asia based on plastid and nuclear sequences. Mol Phylogenet Evol. 2013;69:950–60. https://doi.org/10.1016/j.ympev.2013.06.009.
Article
PubMed
Google Scholar
Folk RA, Mandel JR, Freudenstein JV. Ancestral gene flow and parallel organellar genome capture result in extreme phylogenomic discord in a lineage of angiosperms. Syst Biol. 2017;66:320–37. https://doi.org/10.1093/sysbio/syw083.
Article
CAS
PubMed
Google Scholar
Wendel JF, Doyle JJ. Phylogenetic incongruence: window into genome history and speciation. In: Soltis PS, Soltis DE, Doyle JJ, editors. Molecular systematics of plants. New York: Chapman and Hall; 1998. p. 265–96.
Chapter
Google Scholar
Renoult JP, Kjellberg F, Grout C, Santoni S, Khadari B. Cyto-nuclear discordance in the phylogeny of Ficus section Galoglychia and host shifts in plant-pollinator associations. BMC Evol Biol. 2009;9:248. https://doi.org/10.1186/1471-2148-9-248.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rieseberg LH, Wendel JF. Introgression and its consequences in plants. In: Harrison RG, editor. Hybrid zones and the evolutionary process. New York: Oxford University Press; 1993. p. 70–114.
Google Scholar
Seehausen O. Hybridization and adaptive radiation. Trends Ecol Evol. 2004;19:198–207. https://doi.org/10.1016/j.tree.2004.01.003.
Article
PubMed
Google Scholar
Arnold ML, Buckner CM, Robinson JJ. Pollen mediated introgression and hybrid speciation in Louisiana irises. Proc Natl Acad Sci U S A. 1991;88:1398–402. https://doi.org/10.2307/2356002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Setoguchi H, Watanabe I. Intersectional gene flow between insular endemics of Ilex (Aquifoliaceae) on the Bonin Islands and the Ryukyu Islands. Am J Bot. 2000;87:793–810. https://doi.org/10.2307/2656887.
Article
CAS
PubMed
Google Scholar
Hillis DM, Moritz C, Porter CA, Baker RJ. Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science. 1991;251:208–310. https://doi.org/10.1126/science.1987647.
Article
Google Scholar
Wendel JF, Schnabel A, Seelanan T. An unusual ribosomal DNA-sequence from Gossypium gossypioides reveals ancient, cryptic intergenomic introgression. Mol Phylogenet Evol. 1995a;4:298–313.
Article
CAS
PubMed
Google Scholar
Wendel JF, Schnabel A, Seelanan T. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci U S A. 1995b;92:280–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim KY, Kovarik A, Matyasek R, Bezdek M, Lichtenstein CP, Leitch AR, et al. Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units. Chromosome. 2000;109:161–72. https://doi.org/10.1007/s004120050424.
Article
CAS
Google Scholar
Kovarik A, Pires JC, Leitch AR, Lim KY, Sherwood AM, Matyasek R, et al. Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics. 2005;169:931–44. https://doi.org/10.1534/genetics.104.032839.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lunerova J, Renny-Byfield S, Matyasek R, Leitch A, Kovarik A. Concerted evolution rapidly eliminates sequence variation in rDNA coding regions but not in intergenic spacers in Nicotiana tabacum allotetraploid. Plant Syst Evol. 2017;303:1043–60. https://doi.org/10.1007/s00606-017-1442-7.
Article
CAS
Google Scholar
Pellicer J, Fay MF, Leitch IJ. The largest eukaryotic genome of them all? Bot J Linn Soc. 2010;164:10–5. https://doi.org/10.1111/j.1095-8339.2010.01072.x.
Article
Google Scholar
Dodsworth S, Leitch AR, Leitch IJ. Genome size diversity in angiosperms and its influence on gene space. Curr Opin Genet Dev. 2015;35:73–8. https://doi.org/10.1016/j.gde.2015.10.006.
Article
CAS
PubMed
Google Scholar
Haga T. Chromosome complement of Kinugasa japonica with special reference to its origin and hebavior. Cytologia. 1938;8:137–41. https://doi.org/10.1508/cytologia.8.137.
Article
Google Scholar
Ji Y, Li H, Zhou ZK. Paris caobangensis YH Ji, H. Li & ZK Zhou (Trilliaceae), a new species from northern Vietnam. Acta Phytotaxon Sin. 2006;44:700–3. https://doi.org/10.1360/aps050112.
Article
Google Scholar
Zachos J, Pagani M, Sloan L, Thomas E, Billups K. Trends, rhythms and aberrations in global climate 65 Ma to present. Science. 2001;292:686–93. https://doi.org/10.1126/science.1059412.
Article
CAS
PubMed
Google Scholar
Collinson ME. Vegetational and floristic changes around the Eocene/Oligocene boundary in western and Central Europe. In: Prothero DR, Berggren WA, editors. Eocene-Oligocene climate and biotic evolution. Princeton: Princeton University Press; 1992. p. 437–50.
Chapter
Google Scholar
Santosh M. History of supercontinents and its relation to the origin of Japanese islands. J Geodyn. 2011;120:100–14. https://doi.org/10.5026/jgeography.120.100.
Article
Google Scholar
Sun XJ, Wang PX. How old is the Asian monsoon system? Palaeobotanical records from China. alaeogeogr Palaeoclimatol Palaeoecol. 2005;222:181–222. https://doi.org/10.1016/j.palaeo.2005.03.005.
Article
Google Scholar
Wan SM, Li AC, Clift PD, Stut JBW. Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeogr Palaeoclimatol Palaeoecol. 2007;254:561–82. https://doi.org/10.1016/j.palaeo.2007.07.009.
Article
Google Scholar
Jacques FMB, Guo SX, Su T, Xing YW, Huang YJ, Liu YS, et al. Quantitative reconstruction of the Late Miocene monsoon climates of southwest China: a case study of the Lincang flora from Yunnan Province. Palaeogeogr Palaeoclimatol Palaeoecol. 2011;304:318–27. https://doi.org/10.1016/j.palaeo.2010.04.014.
Article
Google Scholar
Zhang QQ, Ferguson DK, Mosbrugger V, Wang YF, Li CS. Vegetation and climatic changes of SW China in response to the uplift of Tibetan plateau. Palaeogeogr Palaeoclimatol Palaeoecol. 2012;363:23–36. https://doi.org/10.1016/j.palaeo.2012.08.009.
Article
Google Scholar
Yao YF, Bruch AA, Mosbrugger V, Li CS. Quantitative reconstruction of Miocene climate patterns and evolution in southern China based on plant fossils. Palaeogeogr Palaeoclimatol Palaeoecol. 2011;304:291–307. https://doi.org/10.1016/j.palaeo.2010.04.012.
Article
Google Scholar
Li FJ, Rousseau DD, Wu NQ, Hao QZ, Pei YP. Late Neogene evolution of the East Asian monsoon revealed by terrestrial mollusk record in western Chinese loess plateau: from winter to summer dominated subregime. Earth Planet Sci Lett. 2008;274:439–47. https://doi.org/10.1016/j.epsl.2008.07.038.
Article
CAS
Google Scholar
An ZS, Kutzbach JE, Prell WL, Porter SC. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature. 2001;411:62–6. https://doi.org/10.1038/35075035.
Article
CAS
Google Scholar
Yao T, Thompson L, Yang W, Yu WS, Gao Y, Guo XJ, et al. Different glacier status with atmospheric circulations in Tibetan plateau and surroundings. Nat Clim Chang. 2012;2:663–7. https://doi.org/10.1038/nclimate1580.
Article
Google Scholar
Li XW, Li J. The Tanaka-Kaiyong line – an important floristic line for the study of the flora of East Asia. Ann Mo Bot Gard. 1997;84:888–92. https://doi.org/10.2307/2992033.
Article
Google Scholar
Wang L, Schneider H, Zhang XC, Xiang QP. The rise of the Himalaya enforced the diversification of SE Asian ferns by altering the monsoon regimes. BMC Plant Biol. 2012;12:210. https://doi.org/10.1186/1471-2229-12-210.
Article
PubMed
PubMed Central
Google Scholar
Lu LM, Mao LF, Yang T, Ye JF, Liu B, Li HL, et al. Evolutionary history of the angiosperm flora of China. Nature. 2018;554:234–8. https://doi.org/10.1038/nature25485.
Article
CAS
PubMed
Google Scholar
Harrison HC, Yu G, Takahara H, Prentice IC. Paleovegetation: diversity of temperate plants in East Asia. Nature. 2001;413:129–30. https://doi.org/10.1038/35093166.
Article
CAS
PubMed
Google Scholar
Royden LH, Burchfiel BC, Van DHRD. The geological evolution of the Tibetan plateau. Science. 2008;321:1054–8. https://doi.org/10.1126/science.1155371.
Article
CAS
PubMed
Google Scholar
Shi YF, Cui ZJ, Su Z. The quaternary glaciations and environmental variations in China. Shijiangzhuang: Hebei Science and Technology Publishing House; 2005.
Google Scholar
Li JJ, Fang XM. Uplift of the Tibetan plateau and environmental changes. Chin Sci Bull. 1999;44:2117–24. https://doi.org/10.1007/BF03182692.
Article
Google Scholar
Shi YF. Evolution of the cryosphere in the Tibetan plateau, China, and its relationship with the global change in the mid-Quaternary. J Glaciol Geocryol. 1998;20:197–208.
Google Scholar
Axelrod DI, Al-Shehbaz I, Raven PH. History of the modern flora of China. In: Zhang AL, Wu SG, editors. Floristic characteristics and diversity of East Asian plants. Beijing: China Higher Education Press; 1998. p. 43–55.
Google Scholar
Qiu YX, Fu CX, Comes HP. Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of quaternary climate and environmental change in the world’s most diverse temperate flora. Mol Phylogenet Evol. 2011;59:225–44. https://doi.org/10.1016/j.ympev.2011.01.012.
Article
PubMed
Google Scholar
Qian H, Ricklefs RE. Large-scale processes and the Asian bias in species diversity of temperate plants. Nature. 2000;407:180–2. https://doi.org/10.1038/35025052.
Article
CAS
PubMed
Google Scholar
Wu ZY, Sun H, Zhou ZK, Peng H, Li DZ. Origin and differentiation of endemism in the flora of China. Acta Bot Yunnan. 2005;27:577–604. https://doi.org/10.1007/s11515-007-0020-8.
Article
Google Scholar
Wen J, Zhang JQ, Nie ZL, Zhong Y, Sun H. Evolutionary diversifications of plants on the Qinghai-Tibetan plateau. Front Genet. 2014;5:4. https://doi.org/10.3389/fgene.2014.00004.
Article
PubMed
PubMed Central
Google Scholar
Favre A, Päckert M, Pauls SU, Jähnig SC, Uhl D, Michalak I, et al. The role of the uplift of the Qinghai-Tibetan plateau for the evolution of Tibetan biotas. Biol Rev. 2015;90:236–53. https://doi.org/10.1111/brv.12107.
Article
PubMed
Google Scholar
Vinogradov AE. Selfish DNA is maladaptive: evidence from the plant Red List. Trends Genet. 2003;19:609–14. https://doi.org/10.1016/j.tig.2003.09.010.
Article
CAS
PubMed
Google Scholar
Knight CA, Molinari NA, Petrov DA. The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot. 2005;95:177–90. https://doi.org/10.1093/aob/mci011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suda J, Kyncl T, Jarolímová V. Genome size variation in Macaronesian angiosperms: forty percent of the Canarian endemic flora completed. Plant Syst Evol. 2005;252:215–38. https://doi.org/10.1007/s00606-004-0280-6.
Article
CAS
Google Scholar
Leitch IJ, Beaulieu JM, Chase MW, Leitch AR, Fay MF. Genome size dynamics and evolution in monocots. Ann Bot. 2010. https://doi.org/10.1155/2010/862516.
Article
Google Scholar
Pellicer J, Kelly LJ, Leitch IJ, Zomlefer WB, Fay MF. A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae. New Phytol. 2014;201:1484–97. https://doi.org/10.1111/nph.12617.
Article
CAS
PubMed
Google Scholar
Valente LM, Savolainen V, Vargas P. Unparalleled rates of species diversification in Europe. Proc R Soc B. 2010;277:1489–97. https://doi.org/10.1098/rspb.2009.2163.
Article
PubMed
PubMed Central
Google Scholar
Klak C, Khunou A, Reeves G, Hedderson T. A phylogenetic hypothesis for the Aizoaceae (Caryophyllales) based on four plastid DNA regions. Am J Bot. 2003;90:1433–45. https://doi.org/10.2307/4123697.
Article
CAS
PubMed
Google Scholar
Ji Y, Yang C, Huang Y. A new species of Paris sect. Axiparis (Melanthiaceae) from Yunnan, China. Phytotaxa. 2017;306:234–6. https://doi.org/10.11646/phytotaxa.306.3.6.
Article
Google Scholar
Yin H, Zhang H, Xue D. Paris polyphylla var. emeiensis H.X.Yin, H. Zhang & D. Xue, a new variety of Trilliaceae from Sichuan, China. Acta Phytotaxon Sin. 2007;45:822–7. https://doi.org/10.1360/aps06160.
Article
Google Scholar
Li H, Lei LG, Yang YM. Paris yanchii, a new species of Paris Linnaeus (Melanthaceae) from Yunnan. J West China For Sci. 2017;46:1–5. https://doi.org/10.16473/j.cnki.xblykx1972.2017.01.001.
Article
CAS
Google Scholar
Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11–5.
Google Scholar
Patel RK, Jain M. NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One. 2012;7:e30619. https://doi.org/10.1371/journal.pone.0030619.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie2. Nat Methods. 2012;9:357–9. https://doi.org/10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wyman SK, Jansen RK, Boore JL. Automatic annotation of organellar genomes with DOGMA. Bioinformatics. 2004;20:3252–5. https://doi.org/10.1093/bioinformatics/bth352.
Article
CAS
PubMed
Google Scholar
Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005;33:W686–9. https://doi.org/10.1093/nar/gki366.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9. https://doi.org/10.1093/bioinformatics/bts199.
Article
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. https://doi.org/10.1093/molbev/mst010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14:817–8. https://doi.org/10.1093/bioinformatics/14.9.817.
Article
CAS
PubMed
Google Scholar
Posada D, Buckley TR. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol. 2004;53:793–808. https://doi.org/10.1080/10635150490522304.
Article
PubMed
Google Scholar
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2017;34:772–3. https://doi.org/10.1093/molbev/msw260.
Article
CAS
PubMed
Google Scholar
Farris JS, Källersjö M, Kluge AC, Bult C. Testing significance of incongruence. Cladistics. 1994;10:315–9.
Article
Google Scholar
Swofford DL. PAUP: phylogenetic analysis using parsimony (and other methods), 4.0 beta. Massachusetts: Sinauer Associates; 2002.
Google Scholar
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analysis with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90. https://doi.org/10.1093/bioinformatics/btl446.
Article
CAS
PubMed
Google Scholar
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4. https://doi.org/10.1093/bioinformatics/btg180.
Article
CAS
PubMed
Google Scholar
Givnish TJ, Zuluaga A, Marques I, Lam VKY, Gomez MS, Iles WJD, et al. Phylogenomics and historical biogeography of the monocot order Liliales: out of Australia and through Antarctica. Cladistics. 2016;32:581–605. https://doi.org/10.1111/cla.12153.
Article
PubMed
Google Scholar
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, et al. Beast 2: a software platform for bayesian evolutionary analysis. PLoS Comput Biol. 2014;10:e1003537. https://doi.org/10.1371/journal.pcbi.1003537.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8. https://doi.org/10.1093/bioinformatics/bty633.
Article
CAS
PubMed
Google Scholar
R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for statistical computing; 2017.
Google Scholar
Rabosky DL, Grundler M, Anderson C, Title P, Shi JJ, Brown JW, et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol Evol. 2014;5:701–7. https://doi.org/10.1111/2041-210X.12199.
Article
Google Scholar
Yu Y, Harris AJ, He XJ. S-DIVA (statistical dispersal-vicariance analysis): a tool for inferring biogeographic histories. Mol Phylogenet Evol. 2010;56:848–50. https://doi.org/10.1016/j.ympev.2010.04.011.
Article
PubMed
Google Scholar
Yu Y, Harris AJ, Blair C, He X. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol Phylogenet Evol. 2015;87:46–9. https://doi.org/10.1016/j.ympev.2015.03.008.
Article
PubMed
Google Scholar