Augustine RC, Vierstra RD. SUMOylation: re-wiring the plant nucleus during stress and development. Curr Opin Plant Biol. 2018;45(Pt A):143–54.
CAS
PubMed
Google Scholar
van den Burg HA, Kini RK, Schuurink RC, Takken FL. Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense. Plant Cell. 2010;22(6):1998–2016.
PubMed
PubMed Central
Google Scholar
Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol. 2010;11(12):861–71.
CAS
PubMed
PubMed Central
Google Scholar
Geiss-Friedlander R, Melchior F. Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol. 2007;8(12):947–56.
CAS
PubMed
Google Scholar
Yates G, Srivastava AK, Sadanandom A. SUMO proteases: uncovering the roles of deSUMOylation in plants. J Exp Bot. 2016;67(9):2541–8.
CAS
PubMed
Google Scholar
Park HJ, Kim WY, Park HC, Lee SY, Bohnert HJ, Yun DJ. SUMO and SUMOylation in plants. 2011.
Takashi I, Mika Y, Kenji M, Keiko S. MMS21/HPY2 and SIZ1, two Arabidopsis SUMO E3 ligases, have distinct functions in development. PLoS One. 2012;7(10):e46897.
Google Scholar
Saracco SA, Miller MJ, Jasmina K, Vierstra RD. Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiol. 2007;145(1):119–34.
CAS
PubMed
PubMed Central
Google Scholar
Elrouby N. Analysis of small ubiquitin-like modifier (sumo) targets reflects the essential nature of protein sumoylation and provides insight to elucidate the role of sumo in plant development. Plant Physiol. 2015;169(2):1006–17.
CAS
PubMed
PubMed Central
Google Scholar
Liu L, Jiang Y, Zhang X, Wang X, Wang Y, Han Y, Coupland G, Jin JB, Searle I, Fu YF, et al. Two SUMO proteases SUMO PROTEASE RELATED TO FERTILITY1 and 2 are required for FERTILITY in Arabidopsis. Plant Physiol. 2017;175(4):1703–19.
CAS
PubMed
PubMed Central
Google Scholar
Kong X, Xi L, Qu GP, Peng L, Jing JB. Arabidopsis SUMO protease ASP1 positively regulates flowering time partially through regulating FLC stability. J Integr Plant Biol. 2017;59(1):15–29.
CAS
PubMed
Google Scholar
Liu L, Yan X, Kong X, Zhao Y, Gong Z, Jin JB, Guo Y. Transcriptional gene silencing maintained by OTS1 SUMO protease requires a DNA-dependent polymerase V-dependent pathway. Plant Physiol. 2017;173(1):655–67.
PubMed
Google Scholar
Lucio C, Gillian P, Elizabeth O, Benjamin S, Peter D, Ari S. Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and −2 regulate SALT stress responses in Arabidopsis. Plant Cell. 2008;20(10):2894–908.
Google Scholar
Lin X, Niu D, Hu Z, Kim DH, Jin YH, Cai B, Liu P, Miura K, Yun D, Kim W. An Arabidopsis SUMO E3 ligase, SIZ1, negatively regulates photomorphogenesis by promoting COP1 activity. PLoS Genet. 2016;12(4):e1006016.
PubMed
PubMed Central
Google Scholar
Sadanandom A, Ádám É, Orosa B, Viczián A, Klose C, Zhang C, Josse E, Kozma-Bognár L, Nagy F. SUMOylation of phytochrome-B negatively regulates light-induced signaling in Arabidopsis thaliana. Proc Natl Acad Sci. 2015;112(35):11108–13.
CAS
PubMed
PubMed Central
Google Scholar
Kim S, Park BS, Yeu SY, Song SI, Song JT, Seo HS. E3 SUMO ligase AtSIZ1 positively regulates SLY1-mediated GA signalling and plant development. Biochem J. 2015;469(2):299–314.
CAS
PubMed
Google Scholar
Conti L, Nelis S, Zhang C, Woodcock A, Swarup R, Galbiati M, Tonelli C, Napier R, Hedden P, Bennett M. Small ubiquitin-like modifier protein SUMO enables plants to control growth independently of the phytohormone gibberellin. Dev Cell. 2014;28(1):102–10.
CAS
PubMed
Google Scholar
Xu P, Yuan D, Liu M, Li C, Liu Y, Zhang S, Yao N, Yang C. AtMMS21, an SMC5/6 complex subunit, is involved in stem cell niche maintenance and DNA damage responses in Arabidopsis roots. Plant Physiol. 2013;161(4):1755–68.
CAS
PubMed
PubMed Central
Google Scholar
Zheng Y, Schumaker KS, Guo Y. Sumoylation of transcription factor MYB30 by the small ubiquitin-like modifier E3 ligase SIZ1 mediates abscisic acid response in Arabidopsis thaliana. Proc Natl Acad Sci. 2012;109(31):12822–7.
CAS
PubMed
PubMed Central
Google Scholar
Benlloch R, Lois LM. Sumoylation in plants: mechanistic insights and its role in drought stress. J Exp Bot. 2018;69(19):4539–54.
CAS
PubMed
Google Scholar
Raorane M. L, Mutte, Sumanth K, Varadarajan, Adithi R, Pabuayon, Isaiah M, Kohli, Ajay. Protein SUMOylation and plant abiotic stress signaling: in silico case; study of rice RLKs, heat-shock and Ca2
+-binding proteins. Plant Cell Rep. 2013;32(7):1053–65.
CAS
PubMed
Google Scholar
Castro PH, Rui MT, Bejarano ER, Azevedo H. SUMO, a heavyweight player in plant abiotic stress responses. Cell Mol Life Sci. 2012;69(19):3269–83.
CAS
PubMed
Google Scholar
Rytz TC, Miller MJ, McLoughlin F, Augustine RC, Marshall RS, Juan Y, Charng Y, Scalf M, Smith LM, Vierstra RD. SUMOylome profiling reveals a diverse array of nuclear targets modified by the SUMO ligase SIZ1 during heat stress. Plant Cell. 2018;30(5):1077–99.
CAS
PubMed
PubMed Central
Google Scholar
Srivastava AK, Zhang C, Caine RS, Gray J, Sadanandom A. Rice SUMO protease Overly Tolerant to salt 1 targets the transcription factor, OsbZIP23 to promote drought tolerance in rice. Plant J. 2017;6(92):1031–43.
Google Scholar
Mishra N, Sun L, Zhu X, Smith J, Prakash Srivastava A, Yang X, Pehlivan N, Esmaeili N, Luo H, Shen G. Overexpression of the rice SUMO E3 ligase gene OsSIZ1 in cotton enhances drought and heat tolerance, and substantially improves fiber yields in the field under reduced irrigation and rainfed conditions. Plant Cell Physiol. 2017;58(4):735–46.
CAS
PubMed
PubMed Central
Google Scholar
Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun D, Hasegawa PM. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell. 2007;19(4):1403–14.
CAS
PubMed
PubMed Central
Google Scholar
Catala R, Ouyang J, Abreu IA, Hu Y, Seo H, Zhang X, Chua N. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell. 2007;19(9):2952–66.
CAS
PubMed
PubMed Central
Google Scholar
Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung D, Vierstra RD. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis accumulation of sumo1 and-2 conjugates is increased by stress. J Biol Chem. 2003;278(9):6862–72.
CAS
PubMed
Google Scholar
Miller MJ, Barrett-Wilt GA, Zhihua H, Vierstra RD. Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis. Proc Natl Acad Sci. 2011;107(1):16512–7.
Google Scholar
Nabil E, George C. Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes. Proc Natl Acad Sci. 2010;107(40):17415–20.
Google Scholar
Foncéka D, Hodoabalo T, Rivallan R, Faye I, Sall MN, Ndoye O, Fávero AP, Bertioli DJ, Glaszmann JC, Courtois B. Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol. 2009;9(1):103.
PubMed
PubMed Central
Google Scholar
Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EKS, Liu X, Gao D, Clevenger J, Dash S. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet. 2016;48(4):438.
CAS
PubMed
Google Scholar
Kenta S, Bertioli DJ, Varshney RK, Moretzsohn MC, Leal-Bertioli SCM, Mahendar T, Pandey MK, Jean-Francois R, Daniel F, Gowda MVC. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the a and B genomes of Arachis and divergence of the legume genomes. DNA Res. 2013;20(2):173–84.
Google Scholar
Smith BW. Arachis hypogaea. Aerial flower and subterranean fruit. Am J Bot. 1950;37(10):802–15.
Google Scholar
Xi XY. Development and structure of pollen and embryo sac in peanut (Arachis hypogaea L.). Bot Gaz. 1991;152(2):164–72.
Google Scholar
Periasamy K, Sampoornam C. The morphology and anatomy of ovule and fruit development in Arachis hypogaea L. Ann Bot. 1984;53(3):399–411.
Google Scholar
Chen X, Yang Q, Li H, Li H, Hong Y, Pan L, Chen N, Zhu F, Chi X, Zhu W. Transcriptome-wide sequencing provides insights into geocarpy in peanut (Arachis hypogaea L.). Plant Biotechnol J. 2016;14(5):1215–24.
CAS
PubMed
Google Scholar
Musingo MN, Basha SM, Sanders TH, Cole RJ, Blankenship PD. Effect of drought and temperature stress on peanut (Arachis hypogaea L.) seed composition. J Plant Physiol. 1989;134(6):710–5.
CAS
Google Scholar
Cui F, Sui N, Duan G, Liu Y, Han Y, Liu S, Wan S, Li G. Identification of metabolites and transcripts involved in salt stress and recovery in peanut. Front Plant Sci. 2018;9:217.
PubMed
PubMed Central
Google Scholar
Singh AL, Hariprassana K, Solanki RM. Screening and selection of groundnut genotypes for tolerance of soil salinity. Aus J Crop Sci. 2008;1(3):69–77.
CAS
Google Scholar
Li S, Lin M, Wang J, Zhang L, Lin M, Hu Z, Qi Z, Jiang H, Fu Y, Xin D. Regulation of soybean SUMOylation system in response to Phytophthora sojae infection and heat shock. Plant Growth Regul. 2019;87(1):69–82.
CAS
Google Scholar
Li Y, Wang G, Xu Z, Li J, Sun M, Guo J, Ji W. Organization and regulation of soybean sumoylation system under abiotic stress conditions. Front Plant Sci. 2017;8:1458.
PubMed
PubMed Central
Google Scholar
Augustine RC, York SL, Rytz TC, Vierstra RD. Defining the SUMO system in maize: sumoylation is up-regulated during endosperm development and rapidly induced by stress. Plant Physiol. 2016;171(3):2191.
PubMed
PubMed Central
Google Scholar
Chaikam V, Karlson DT. Response and transcriptional regulation of rice SUMOylation system during development and stress conditions. BMB Rep. 2010;43(2):103.
CAS
PubMed
Google Scholar
Zhao Q, Xie Y, Zheng Y, Jiang S, Liu W, Mu W, Liu Z, Zhao Y, Xue Y, Ren J. GPS-SUMO: a tool for the prediction of SUMOylation sites and SUMO-interaction motifs. Nucleic Acids Res. 2014;42(Web Server issue):W325–30.
CAS
PubMed
PubMed Central
Google Scholar
Rosa MT, Almeida DM, Pires IS, Da Rosa FD, Martins AG, Da Maia LC, de Oliveira AC, Saibo NJ, Oliveira MM, Abreu IA. Insights into the transcriptional and post-transcriptional regulation of the rice SUMOylation machinery and into the role of two rice SUMO proteases. BMC Plant Biol. 2018;18(1):349.
CAS
PubMed
PubMed Central
Google Scholar
Castro PH, Bachmair A, Bejarano ER, Coupland G, Lois LM, Sadanandom A, Van Den Burg HA, Vierstra RD, Azevedo H. Revised nomenclature and functional overview of the ULP gene family of plant deSUMOylating proteases. J Exp Bot. 2018;69(19):4505–9.
PubMed
PubMed Central
Google Scholar
Clevenger J, Chu Y, Scheffler B, Ozias-Akins P. A developmental transcriptome map for allotetraploid Arachis hypogaea. Front Plant Sci. 2016;7:1446.
PubMed
PubMed Central
Google Scholar
Bowne J, Bacic A, Tester M, Roessner U. Abiotic stress and metabolomics. Ann Plant Rev. 2018:61–85.
Zhu J. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313–24.
CAS
PubMed
PubMed Central
Google Scholar
Garrido E, Srivastava AK, Sadanandom A. Exploiting protein modification systems to boost crop productivity: SUMO proteases in focus. J Exp Bot. 2018;69(19):4625–32.
CAS
PubMed
PubMed Central
Google Scholar
Hammoudi V, Vlachakis G, Schranz ME, van den Burg HA. Whole-genome duplications followed by tandem duplications drive diversification of the protein modifier SUMO in angiosperms. New Phytol. 2016;211(1):172–85.
CAS
PubMed
PubMed Central
Google Scholar
Knobbe AR, Horken KM, Plucinak TM, Eniko B, Heriberto C, Weeks DP. SUMOylation by a stress-specific small ubiquitin-like modifier E2 conjugates is essential for survival of Chlamydomonas reinhardtii under stress conditions. Plant Physiol. 2015;167(3):753–65.
CAS
PubMed
PubMed Central
Google Scholar
Lai J, Han D, Yang C. AtMMS21: connecting DNA repair and root development. Trends Plant Sci. 2018;23(2):89–91.
CAS
PubMed
Google Scholar
Liu Y, Lai J, Yu M, Wang F, Zhang J, Jiang J, Hu H, Wu Q, Lu G, Xu P, et al. The Arabidopsis SUMO E3 ligase AtMMS21 dissociates the E2Fa/DPa complex in cell cycle regulation. Plant Cell. 2016;28(9):2225–37.
CAS
PubMed
PubMed Central
Google Scholar
Castro PH, Azevedo H, Bachmair A, Bejarano ER, Coupland G, Lois LM, Sadanandom A, van den Burg HA, Vierstra RD. Revised nomenclature and functional overview of the ULP gene family of plant deSUMOylating proteases. J Exp Bot. 2018;69(19):4505–9.
PubMed
PubMed Central
Google Scholar
Hermkes R, Fu YF, Nürrenberg K, Budhiraja R, Schmelzer E, Elrouby N, Dohmen RJ, Bachmair A, Coupland G. Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1. Planta. 2011;233(1):63–73.
CAS
PubMed
Google Scholar
Wu J, Lin L, Xu M, Chen P, Liu D, Sun Q, Ran L, Wang Y. Homoeolog expression bias and expression level dominance in resynthesized allopolyploid Brassica napus. BMC Genomics. 2018;19(1):586.
PubMed
PubMed Central
Google Scholar
Grover CE, Gallagher JP, Szadkowski EP, Yoo MJ, Flagel LE, Wendel JF. Homeolog expression bias and expression level dominance in allopolyploids. New Phytol. 2012;196(4):966–71.
CAS
PubMed
Google Scholar
Bottani S, Zabet NR, Wendel JF, Veitia RA. Gene expression dominance in allopolyploids: hypotheses and models. Trends Plant Sci. 2018;23(5):393–402.
CAS
PubMed
Google Scholar
Xia H, Zhao C, Hou L, Li A, Zhao S, Bi Y, An J, Zhao Y, Wan S, Wang X. Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness. BMC Genomics. 2013;14(1):517.
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Sun J, Xia H, Zhao C, Hou L, Wang B, Li A, Chen M, Zhao S, Wang X. Characterization of peanut phytochromes and their possible regulating roles in early peanut pod development. PLoS One. 2018;13(5):e198041.
Google Scholar
Sun Y, Wang Q, Li Z, Hou L, Dai S, Liu W. Comparative proteomics of peanut gynophore development under dark and mechanical stimulation. J Proteome Res. 2013;12(12):5502–11.
CAS
PubMed
Google Scholar
Moctezuma E. Changes in auxin patterns in developing gynophores of the peanut plant (Arachis hypogaea L.). Ann Bot. 1999;83(3):235–42.
CAS
PubMed
Google Scholar
Pattee HE, Johns EB, Singleton JA, Sanders TH. Composition changes of peanut fruit parts during maturation. Peanut Sci. 1974;1(2):57–62.
CAS
Google Scholar
Tang Z, Blacquiere G, Leus G. Clustal W and Clustal X version 2.0. Bioinformatics. 2007.
Hu B, Jin J, Guo A, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–7.
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.
CAS
PubMed
PubMed Central
Google Scholar
Marco B, Stefan B, Andrew W, Konstantin A, Gabriel S, Tobias S, Florian K, Tiziano Gallo C, Martino B, Lorenza B. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42(Web Server issue):W252.
Google Scholar
Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49.
CAS
PubMed
PubMed Central
Google Scholar
Krzywinski M, Schein JI. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45.
CAS
PubMed
PubMed Central
Google Scholar
Wankun D, Yongbo W, Zexian L, Han C, Yu X. HemI: a toolkit for illustrating heatmaps. PLoS One. 2014;9(11):e111988.
Google Scholar