Peumans WJ, Van Damme EJ. Lectins as plant defense proteins. Plant Physiol. 1995;109:347–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Damme EJ, Barre A, Rouge P, Peumans WJ. Cytoplasmic/nuclear plant lectins: a new story. Trends Plant Sci. 2004;9(10):484–9.
Article
PubMed
CAS
Google Scholar
Jiang SY, Ma Z, Ramachandran S. Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evol Biol. 2010;10:79.
Article
PubMed
PubMed Central
CAS
Google Scholar
Y-j H, Z-h Z, L-l S, Olsson S, Wang ZH, Lu GD. Evolutionary analysis of plant jacalin-related lectins (JRLs) family and expression of rice JRLs in response to Magnaporthe oryzae. J Integr Agric. 2018;17:1252–66.
Article
Google Scholar
Lannoo N, Van Damme EJ. Lectin domains at the frontiers of plant defense. Front Plant Sci. 2014;5:397.
PubMed
PubMed Central
Google Scholar
Chrispeels MJ, Raikhel NV. Lectins, lectin genes, and their role in plant defense. Plant Cell. 1991;3:1–9.
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, Peumans WJ, Barre A, Astoul CH, Rovira P, Rouge P, Proost P, Truffa-Bachi P, Jalali AA, Van Damme EJ. Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants. Planta. 2000;210(6):970–8.
Article
CAS
PubMed
Google Scholar
Song M, Xu W, Xiang Y, Jia H, Zhang L, Ma Z. Association of jacalin-related lectins with wheat responses to stresses revealed by transcriptional profiling. Plant Mol Biol. 2014;84:95-110.
Article
CAS
Google Scholar
Jiang JF, Han Y, Xing LJ, Xu YY, Xu ZH, Chong K. Cloning and expression of a novel cDNA encoding a mannose-specific jacalin-related lectin from Oryza sativa. Toxicon. 2006;47(1):133–9.
Article
CAS
PubMed
Google Scholar
Jiang J-F, Xu Y-Y, Chong K. Overexpression of OsJAC1, a Lectin gene, suppresses the coleoptile and stem elongation in Rice. J Integr Plant Biol. 2007;49:230–7.
Article
CAS
Google Scholar
Weidenbach D, Esch L, Moller C, Hensel G, Kumlehn J, Hofle C, Huckelhoven R, Schaffrath U. Polarized defense against fungal pathogens is mediated by the Jacalin-related Lectin domain of modular Poaceae-specific proteins. Mol Plant. 2016;9(4):514–27.
Article
CAS
PubMed
Google Scholar
Karran P. DNA double strand break repair in mammalian cells. Curr Opin Genet Dev. 2000;10(2):144–50.
Article
CAS
PubMed
Google Scholar
Haber JE. Partners and pathways repairing a double-strand break. Trends Genet. 2000;16(6):259–64.
Article
CAS
PubMed
Google Scholar
Cassidy CL, Lemon JA, Boreham DR. Impacts of low-dose gamma-radiation on genotoxic risk in aquatic ecosystems. Dose Response. 2007;5(4):323–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature. 2000;408(6811):433–9.
Article
CAS
PubMed
Google Scholar
Paques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999;63(2):349–404.
CAS
PubMed
PubMed Central
Google Scholar
Lavin MF, Kozlov S. ATM activation and DNA damage response. Cell Cycle. 2007;6(8):931–42.
Article
CAS
PubMed
Google Scholar
Lopez-Contreras AJ, Fernandez-Capetillo O. The ATR barrier to replication-born DNA damage. DNA Repair (Amst). 2010;9(12):1249–55.
Article
CAS
Google Scholar
Sacco E, Hasan MM, Alberghina L, Vanoni M. Comparative analysis of the molecular mechanisms controlling the initiation of chromosomal DNA replication in yeast and in mammalian cells. Biotechnol Adv. 2012;30(1):73–98.
Article
CAS
PubMed
Google Scholar
Mazouzi A, Velimezi G, Loizou JI. DNA replication stress: causes, resolution and disease. Exp Cell Res. 2014;329(1):85–93.
Article
CAS
PubMed
Google Scholar
Errico A, Costanzo V. Mechanisms of replication fork protection: a safeguard for genome stability. Crit Rev Biochem Mol Biol. 2012;47(3):222–35.
Article
CAS
PubMed
Google Scholar
Jin YW, Na YJ, Lee YJ, An S, Lee JE, Jung M, Kim H, Nam SY, Kim CS, Yang KH, Kim SU, Kim WK, Park WY, Yoo KY, Kim CS, Kim JH. Comprehensive analysis of time- and dose-dependent patterns of gene expression in a human mesenchymal stem cell line exposed to low-dose ionizing radiation. Oncol Rep. 2008;19(1):135–44.
CAS
PubMed
Google Scholar
Koo KM, Jung S, Kim J-B, Kim SH, Kwon SJ, Jeong W-J, Chung GH, Kang SY, Choi YE, Ahn JW. Effect of ionizing radiation on the DNA damage response in Chlamydomonas reinhardtii. Genes Genomics. 2017;39:63–75.
Article
CAS
Google Scholar
Alscher RG, Donahue JL, Cramer CL. Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant. 1997;100:224–36.
Article
CAS
Google Scholar
Saha P, Mukherjee A, Biswas AK. Modulation of NaCl induced DNA damage and oxidative stress in mungbean by pretreatment with sublethal dose. Biol Plant. 2015;59(1):139-146.
Article
CAS
Google Scholar
Lopez E, Arce C, Oset-Gasque MJ, Canadas S, Gonzalez MP. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med. 2006;40(6):940–51.
Article
CAS
PubMed
Google Scholar
Xiang Y, Song M, Wei Z, Tong J, Zhang L, Xiao L, Ma Z, Wang Y. A jacalin-related lectin-like gene in wheat is a component of the plant defence system. J Exp Bot. 2011;62(15):5471–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorlach J, Volrath S, Knauf-Beiter G, Hengy G, Beckhove U, Kogel KH, Oostendorp M, Staub T, Ward E, Kessmann H, Ryals J. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell. 1996;8(4):629–43.
CAS
PubMed
PubMed Central
Google Scholar
Patra J, Sahoo MK, Panda BB. Salicylic acid triggers genotoxic adaptation to methyl mercuric chloride and ethyl methane sulfonate, but not to maleic hydrazide in root meristem cells of Allium cepa L. Mutat Res. 2005;581(1–2):173–80.
Article
CAS
PubMed
Google Scholar
Gichner T, Menke M, Stavreva DA, Schubert I. Maleic hydrazide induces genotoxic effects but no DNA damage detectable by the comet assay in tobacco and field beans. Mutagenesis. 2000;15(5):385–9.
Article
CAS
PubMed
Google Scholar
Dona M, Macovei A, Fae M, Carbonera D, Balestrazzi A. Plant hormone signaling and modulation of DNA repair under stressful conditions. Plant Cell Rep. 2013;32(7):1043–52.
Article
CAS
PubMed
Google Scholar
Mur LA, Kenton P, Atzorn R, Miersch O, Wasternack C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 2006;140(1):249–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou JP, Noctor G. Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol. 2010;153(3):1144–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor G. Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H (2) O (2) to activation of salicylic acid accumulation and signaling. Antioxid Redox Signal. 2013;18(16):2106–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han Y, Mhamdi A, Chaouch S, Noctor G. Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione. Plant Cell Environ. 2013;36(6):1135–46.
Article
CAS
PubMed
Google Scholar
Hwang IS, Hwang BK. The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. Plant Physiol. 2011;155(1):447–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hadwiger LA, Tanaka K. Non-host resistance: DNA damage is associated with SA signaling for induction of PR genes and contributes to the growth suppression of a pea pathogen on pea endocarp tissue. Front Plant Sci. 2017;8:446.
Article
PubMed
PubMed Central
Google Scholar
Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40(2):179–204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Springer PS, McCombie WR, Sundaresan V, Martienssen RA. Gene trap tagging of PROLIFERA, an essential MCM2-3-5-like gene in Arabidopsis. Science. 1995;268(5212):877–80.
Article
CAS
PubMed
Google Scholar
Bell SP. The origin recognition complex: from simple origins to complex functions. Genes Dev. 2002;16(6):659–72.
Article
CAS
PubMed
Google Scholar
Coleman TR, Carpenter PB, Dunphy WG. The Xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts. Cell. 1996;87(1):53–63.
Article
CAS
PubMed
Google Scholar
Nishitani H, Lygerou Z, Nishimoto T, Nurse P. The Cdt1 protein is required to license DNA for replication in fission yeast. Nature. 2000;404(6778):625–8.
Article
CAS
PubMed
Google Scholar
Cho JH, Kim HB, Kim HS, Choi SB. Identification and characterization of a rice MCM2 homologue required for DNA replication. BMB Rep. 2008;41(8):581–6.
Article
CAS
PubMed
Google Scholar
Dang HQ, Tran NQ, Gill SS, Tuteja R, Tuteja N. A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield. Plant Mol Biol. 2011;76(1–2):19–34.
Article
CAS
PubMed
Google Scholar
Aklilu BB, Soderquist RS, Culligan KM. Genetic analysis of the replication protein a large subunit family in Arabidopsis reveals unique and overlapping roles in DNA repair, meiosis and DNA replication. Nucleic Acids Res. 2014;42(5):3104–18.
Article
CAS
PubMed
Google Scholar
Pursell ZF, Kunkel TA. DNA polymerase epsilon: a polymerase of unusual size (and complexity). Prog Nucleic Acid Res Mol Biol. 2008;82:101–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson RE, Klassen R, Prakash L, Prakash S. A major role of DNA polymerase delta in replication of both the leading and lagging DNA strands. Mol Cell. 2015;59(2):163–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pedroza-Garcia JA, Mazubert C, Del Olmo I, Bourge M, Domenichini S, Bounon R, Tariq Z, Delannoy E, Pineiro M, Jarillo JA, Bergounioux C, Benhamed M, Raynaud C. Function of the plant DNA polymerase epsilon in replicative stress sensing, a genetic analysis. Plant Physiol. 2017;173(3):1735–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pedroza-Garcia JA, Domenichini S, Mazubert C, Bourge M, White C, Hudik E, Bounon R, Tariq Z, Delannoy E, Del Olmo I, Pineiro M, Jarillo JA, Bergounioux C, Benhamed M, Raynaud C. Role of the polymerase ϵ sub-unit DPB2 in DNA replication, cell cycle regulation and DNA damage response in Arabidopsis. Nucleic Acids Res. 2016;44(15):7251–66.
CAS
PubMed
PubMed Central
Google Scholar
Culligan K, Tissier A, Britt A. ATR regulates a G2-phase cell-cycle checkpoint in Arabidopsis thaliana. Plant Cell. 2004;16(5):1091–104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Culligan KM, Robertson CE, Foreman J, Doerner P, Britt AB. ATR and ATM play both distinct and additive roles in response to ionizing radiation. Plant J. 2006;48(6):947–61.
Article
CAS
PubMed
Google Scholar
Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 2001;15(17):2177–96.
Article
CAS
PubMed
Google Scholar
Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281(5383):1677–9.
Article
CAS
PubMed
Google Scholar
Czornak K, Chughtai S, Chrzanowska KH. Mystery of DNA repair: the role of the MRN complex and ATM kinase in DNA damage repair. J Appl Genet. 2008;49(4):383–96.
Article
PubMed
Google Scholar
Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28(5):739–45.
Article
CAS
PubMed
Google Scholar
Williams RS, Williams JS, Tainer JA. Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem Cell Biol. 2007;85(4):509–20.
Article
CAS
PubMed
Google Scholar
Cimprich KA, Cortez D. ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol. 2008;9(8):616–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robison JG, Elliott J, Dixon K, Oakley GG. Replication protein a and the Mre11.Rad50.Nbs1 complex co-localize and interact at sites of stalled replication forks. J Biol Chem. 2004;279(33):34802–10.
Article
CAS
PubMed
Google Scholar
Koga A, Ishibashi T, Kimura S, Uchiyama Y, Sakaguchi K. Characterization of T-DNA insertion mutants and RNAi silenced plants of Arabidopsis thaliana UV-damaged DNA binding protein 2 (AtUV-DDB2). Plant Mol Biol. 2006;61(1–2):227–40.
Article
CAS
PubMed
Google Scholar
Molinier J, Lechner E, Dumbliauskas E, Genschik P. Regulation and role of Arabidopsis CUL4-DDB1A-DDB2 in maintaining genome integrity upon UV stress. PLoS Genet. 2008;4(6):e1000093.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miller JH. Mutators in Escherichia coli. Mutat Res. 1998;409(3):99–106.
Article
CAS
PubMed
Google Scholar
Fishel R. Mismatch repair. J Biol Chem. 2015;290(44):26395–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franchitto A, Pichierri P, Piergentili R, Crescenzi M, Bignami M, Palitti F. The mammalian mismatch repair protein MSH2 is required for correct MRE11 and RAD51 relocalization and for efficient cell cycle arrest induced by ionizing radiation in G2 phase. Oncogene. 2003;22(14):2110–20.
Article
CAS
PubMed
Google Scholar
Clough SJ, Bent AF. Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735–43.
Article
CAS
PubMed
Google Scholar
Koo KM, Jung S, Lee BS, Kim JB, Jo YD, Choi HI, Kang SY, Chung GH, Jeong WJ, Ahn JW. The mechanism of starch over-accumulation in Chlamydomonas reinhardtii high-starch mutants identified by comparative Transcriptome analysis. Front Microbiol. 2017;8:858.
Article
PubMed
PubMed Central
Google Scholar