Warschefsky EJ, Klein LL, Frank MH, Chitwood DH, Londo JP, von Wettberg EJB, Miller AJ. Rootstocks: Diversity, Domestication, and Impacts on Shoot Phenotypes. Trends Plant Sci. 2016;21(5):418–37.
Article
CAS
PubMed
Google Scholar
Pina A, Cookson SJ, Calatayud A, Trinchera A, Errea P. Physiological and molecular mechanisms underlying graft compatibility. In: Colla G, Perez Alfocea F, Schwarz D, editors. Vegetable Grafting Principles and Practices. Wallingford: CABI; 2017.
Google Scholar
Irisarri P, Binczycki P, Errea P, Martens HJ, Pina A. Oxidative stress associated with rootstock-scion interactions in pear/quince combinations during early stages of graft development. J Plant Physiol. 2015;176:25–35.
Article
CAS
PubMed
Google Scholar
Cookson SJ, Moreno MJC, Hevin C, Mendome LZN, Delrot S, Magnin N, Trossat-Magnin C, Ollat N. Hetero-grafting with non-self rootstocks induces genes involved in stress responses at the graft interface when compared with auto-grafted controls. J Exp Bot. 2014;65(9):2473–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melnyk CW, Gabel A, Hardcastle TJ, Robinson S, Miyashima S, Grosse I, Meyerowitz EM. Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration. Proc Natl Acad Sci U S A. 2018;115(10):E2447–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan HW, Zhao L, Qiu LL, Xu DB, Tong YF, Guo WB, Yang X, Shen CJ, Yan DL, Zheng BS. Transcriptome and hormonal analysis of grafting process by investigating the homeostasis of a series of metabolic pathways in Torreya grandis cv. Merrillii. Ind Crop Prod. 2017;108:814–23.
Article
CAS
Google Scholar
Fernandez-Garcia N, Carvajal M, Olmos E. Graft union formation in tomato plants: Peroxidase and catalase involvement. Ann Bot. 2004;93(1):53–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu DB, Yuan HW, Tong YF, Zhao L, Qiu LL, Guo WB, Shen CJ, Liu HJ, Yan DL, Zheng BS. Comparative Proteomic Analysis of the Graft Unions in Hickory (Carya cathayensis) Provides Insights into Response Mechanisms to Grafting Process. Front Plant Sci. 2017;8:676.
Article
PubMed
PubMed Central
Google Scholar
Errea P. Implications of phenolic compounds in graft incompatibility in fruit tree species. Sci Hortic. 1998;74(3):195–205.
Article
CAS
Google Scholar
Melnyk CW. Plant grafting: insights into tissue regeneration. Regeneration. 2017;4(1):3–14.
Article
CAS
PubMed
Google Scholar
Gainza F, Opazo I, Munoz C. Graft incompatibility in plants: Metabolic changes during formation and establishment of the rootstock/scion union with emphasis on Prunus species. Chilean J Agric Res. 2015;75:28–34.
Article
Google Scholar
Azimi M, Ozkaya MT, Colgecen H, Buyukkartal HN. Analysis of phenolic compounds for determination of cambium differentiation and tracheal elements in olive graft combinations. J Exp Biol Agric Sci. 2016;4:714–20.
CAS
Google Scholar
DeCooman L, Everaert E, Curir P, Dolci M. The possible role of phenolics in incompatibility expression in Eucalyptus gunnii micrografts. Phytochem Anal. 1996;7(2):92–6.
Article
CAS
Google Scholar
Canas S, Assuncao M, Brazao J, Zanol G, Eiras-Dias JE. Phenolic Compounds Involved in Grafting Incompatibility of Vitis spp: Development and Validation of an Analytical Method for their Quantification. Phytochem Anal. 2015;26(1):1–7.
Article
CAS
PubMed
Google Scholar
Assuncao M, Canas S, Cruz S, Brazdo J, Zanol GC, Eiras-Dias JE. Graft compatibility of Vitis spp.: the role of phenolic acids and flavanols. Sci Hortic. 2016;207:140–5.
Article
CAS
Google Scholar
Chong JL, Poutaraud A, Hugueney P. Metabolism and roles of stilbenes in plants. Plant Sci. 2009;177(3):143–55.
Article
CAS
Google Scholar
Dubrovina AS, Kiselev KV. Regulation of stilbene biosynthesis in plants. Planta. 2017;246(4):597–623.
Article
CAS
PubMed
Google Scholar
Irisarri P, Zhebentyayeva T, Errea P, Pina A. Differential expression of phenylalanine ammonia lyase (PAL) genes implies distinct roles in development of graft incompatibility symptoms in Prunus. Sci Hortic. 2016;204:16–24.
Article
CAS
Google Scholar
Pina A, Errea P. Differential induction of phenylalanine ammonia-lyase gene expression in response to in vitro callus unions of Prunus spp. J Plant Physiol. 2008;165(7):705–14.
Article
CAS
PubMed
Google Scholar
Prabpree A, Sangsil P, Nualsri C, Nakkanong K. Expression profile of phenylalanine ammonia-lyase (PAL) and phenolic content during early stages of graft development in bud grafted Hevea brasiliensis. Biocatal Agric Biotechnol. 2018;14:88–95.
Article
Google Scholar
Cookson SJ, Moreno MJC, Hevin C, Mendome LZN, Delrot S, Trossat-Magnin C, Ollat N. Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signalling, and secondary metabolism. J Exp Bot. 2013;64(10):2997–3008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ikeuchi M, Sugimoto K, Iwase A. Plant Callus: Mechanisms of Induction and Repression. Plant Cell. 2013;25(9):3159–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sauter JJ, Wellenkamp S. Seasonal changes in content of starch, protein and sugars in the twig wood of Salix caprea L. Holzforschung. 1998;52(3):255–62.
Article
CAS
Google Scholar
Schrader S, Sauter JJ. Seasonal changes of sucrose-phosphate synthase and sucrose synthase activities in poplar wood (Populus x canadensis Moench <robusta >) and their possible role in carbohydrate metabolism. J Plant Physiol. 2002;159(8):833–43.
Article
CAS
Google Scholar
Singh BK, Shaner DL. Biosynthesis of branched-chain amino-acids - from test-tube to field. Plant Cell. 1995;7(7):935–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bouche N, Fromm H. GABA in plants: just a metabolite? Trends Plant Sci. 2004;9(3):110–5.
Article
CAS
PubMed
Google Scholar
Booz MR, Kerbauy GB, Guerra MP, Pescador R. The role of 3 -aminobutyric acid (Gaba) in somatic embryogenesis of Acca sellowiana Berg. (Myrtaceae) %J. Braz J Plant Physiol. 2009;21:271–80.
Article
Google Scholar
Pawar B, Kale P, Bahurupe J, Jadhav A, Kale A, Pawar S. Proline and Glutamine Improve in vitro Callus Induction and Subsequent Shooting in Rice. Rice Sci. 2015;22(6):283–9.
Article
Google Scholar
Kumari A, Ray K, Sadhna S, Pandey AK, Sreelakshmi Y, Sharma R. Metabolomic homeostasis shifts after callus formation and shoot regeneration in tomato. PLoS One. 2017;12(5):e0176978.
Article
PubMed
PubMed Central
CAS
Google Scholar
Iwase A, Mita K, Favero DS, Mitsuda N, Sasaki R, Kobayshi M, Takebayashi Y, Kojima M, Kusano M, Oikawa A, et al. WIND1 induces dynamic metabolomic reprogramming during regeneration in Brassica napus. Dev Biol. 2018;442(1):40–52.
Article
CAS
PubMed
Google Scholar
Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K, et al. The AP2/ERF Transcription Factor WIND1 Controls Cell Dedifferentiation in Arabidopsis. Curr Biol. 2011;21(6):508–14.
Article
CAS
PubMed
Google Scholar
Watanabe M, Netzer F, Tohge T, Orf I, Brotman Y, Dubbert D, Fernie AR, Rennenberg H, Hoefgen R, Herschbach C. Metabolome and Lipidome Profiles of Populus x canescens Twig Tissues During Annual Growth Show Phospholipid- Linked Storage and Mobilization of C, N, and S. Front Plant Sci. 2018;9:1292.
Article
PubMed
PubMed Central
Google Scholar
Keller M. The science of grapevines anatomy and physiology. 1st ed. Burlington: Academic Press; 2010.
Google Scholar
Kishor PBK, Kumari PH, Sunita MSL, Sreenivasulu N. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Front Plant Sci. 2015;6:544.
Google Scholar
Usenik V, Krska B, Vican M, Stampar F. Early detection of graft incompatibility in apricot (Prunus armeniaca L.) using phenol analyses. Sci Hortic. 2006;109(4):332–8.
Article
CAS
Google Scholar
Musacchi S, Pagliuca G, Kindt M, Piretti MV, Sansavini S. Flavonoids as markers for pear-quince graft incompatibility. J Appl Bot Angewandte Botanik. 2000;74(5-6):206–11.
CAS
Google Scholar
Usenik V, Stampar F. Different rootstocks for cherries - Influence on polyphenol content and graft incompatibility. In: Palmer JW, Wunsche JN, editors. Proceedings of the Seventh International Symposium on Orchard and Plantation Systems; 2001. p. 175–9.
Google Scholar
Hudina M, Orazem P, Jakopic J, Stampar F. The phenolic content and its involvement in the graft incompatibility process of various pear rootstocks (Pyrus communis L.). J Plant Physiol. 2014;171(5):76–84.
Article
CAS
PubMed
Google Scholar
Biais B, Krisa S, Cluzet S, Da Costa G, Waffo-Teguo P, Merillon JM, Richard T. Antioxidant and Cytoprotective Activities of Grapevine Stilbenes. J Agric Food Chem. 2017;65(24):4952–60.
Article
CAS
PubMed
Google Scholar
Billet K, Houille B, Besseau S, Melin C, Oudin A, Papon N, Courdavault V, Clastre M, Giglioli-Guivarc'h N, Lanoue A. Mechanical stress rapidly induces E-resveratrol and E-piceatannol biosynthesis in grape canes stored as a freshly-pruned byproduct. Food Chem. 2018;240:1022–7.
Article
CAS
PubMed
Google Scholar
Belhadj A, Saigne C, Telef N, Cluzet S, Bouscaut J, Corio-Costet MF, Merillon JM. Methyl jasmonate induces defense responses in grapevine and triggers protection against Erysiphe necator. J Agric Food Chem. 2006;54(24):9119–25.
Article
CAS
PubMed
Google Scholar
Chitarrini G, Zulini L, Masuero D, Vrhovsek U. Lipid, phenol and carotenoid changes in ‘Bianca’ grapevine leaves after mechanical wounding: a case study. Protoplasma. 2017;254(6):2095–106.
Article
CAS
PubMed
Google Scholar
Lambert C, Richard T, Renouf E, Bisson J, Waffo-Teguo P, Bordenave L, Ollat N, Merillon JM, Cluzet S. Comparative Analyses of Stilbenoids in Canes of Major Vitis vinifera L. Cultivars. J Agric Food Chem. 2013;61(47):11392–9.
Article
CAS
PubMed
Google Scholar
Triska J, Vrchotova N, Balik J, Soural I, Sotolar R. Variability in the Content of Trans-Resveratrol, Trans-epsilon-Viniferin and R2-Viniferin in Grape Cane of Seven Vitis vinifera L. Varieties during a Three-Year Study. Molecules. 2017;22(6):928.
Article
PubMed Central
CAS
Google Scholar
Nemeth G, Molnar Z, Podmaniczky P, Sardy DN, Kallay M, Dunai A, Kocsis L. Trans-Resveratrol content in grape cane and root of different scionrootstock combinations. Mitt Klosterneuburg. 2017;67(4):256–64.
Google Scholar
Wang CX, Wu J, Zhang YL, Lu J. Muscadinia rotundifolia ‘Noble’ defense response to Plasmopara viticola inoculation by inducing phytohormonemediated stilbene accumulation. Protoplasma. 2018;255(1):95–107.
Article
CAS
PubMed
Google Scholar
Duan D, Halter D, Baltenweck R, Tisch C, Troster V, Kortekamp A, Hugueney P, Nick P. Genetic diversity of stilbene metabolism in Vitis sylvestris. J Exp Bot. 2015;66(11):3243–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gabaston J, Cantos-Villar E, Biais B, Waffo-Teguo P, Renouf E, Corio-Costet MF, Richard T, Merillon JM. Stilbenes from Vitis vinifera L. Waste: A Sustainable Tool for Controlling Plasmopara Viticola. J Agric Food Chem. 2017;65(13):2711–8.
Article
CAS
PubMed
Google Scholar
Hendriks JHM, Kolbe A, Gibon Y, Stitt M, Geigenberger P. ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol. 2003;133(2):838–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jelitto T, Sonnewald U, Willmitzer L, Hajirezeai M, Stitt M. Inorganic pyrophosphate content and metabolites in potato and tobacco plants expressing escherichia-coli pyrophosphatase in their cytosol. Planta. 1992;188(2):238–44.
Article
CAS
PubMed
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1):248–54.
Article
CAS
PubMed
Google Scholar
Hilbert G, Soyer JP, Molot C, Giraudon J, Milin S, Gaudillere JP. Effects of nitrogen supply on must quality and anthocyanin accumulation in berries of cv. Merlot. VITIS. 2003;42(2):69–76.
CAS
Google Scholar
Torres N, Hilbert G, Luquin J, Goicoechea N, Antolin MC. Flavonoid and amino acid profiling on Vitis vinifera L. cv Tempranillo subjected to deficit irrigation under elevated temperatures. J Food Compos Anal. 2017;62:51–62.
Article
CAS
Google Scholar
Biais B, Benard C, Beauvoit B, Colombie S, Prodhomme D, Menard G, Bernillon S, Gehl B, Gautier H, Ballias P, et al. Remarkable Reproducibility of Enzyme Activity Profiles in Tomato Fruits Grown under Contrasting Environments Provides a Roadmap for Studies of Fruit Metabolism. Plant Physiol. 2014;164(3):1204–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valls J, Agnolet S, Haas F, Struffi I, Ciesa F, Robatscher P, Oberhuber M. Valorization of Lagrein grape pomace as a source of phenolic compounds: analysis of the contents of anthocyanins, flavanols and antioxidant activity. Eur Food Res Technol. 2017;243(12):2211–24.
Article
CAS
Google Scholar
Moss R, Mao QY, Taylor D, Saucier C. Investigation of monomeric and oligomeric wine stilbenoids in red wines by ultra-high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2013;27(16):1815–27.
Article
CAS
PubMed
Google Scholar
R Core Team. R: A language and environment for statistical computing. http://www.R-project.org. Accessed 11/04/2014. Vienna: R Foundation for Statistical Computing; 2015.
Google Scholar
Warnes GR, Bolker B, Lumley T. gplots: Various R programming tools for plotting data. R package version 2.6.0. 2012. https://cran.rproject.org/web/packages/gplots/index.html.
Google Scholar