Hartman GL, West ED, Herman TK. Crops that feed the world 2. Soybean—worldwide production, use, and constraints caused by pathogens and pests. Food Security. 2011;3(1):5–17.
Article
Google Scholar
Lewers KS, St. Martin SK, Hedges BR, Widrlechner MP, Palmer RG. Hybrid soybean seed production: comparison of three methods. Crop Sci. 1996;36:1560–7.
Article
Google Scholar
Lewers KS, Palmer RG. Recurrent selection in soybean. In: In: Plant Breed Rev. Inc: Wiley; 2010. p. 275–313.
Chapter
Google Scholar
Ott A, Yang Y, Bhattacharyya M, Horner H, Palmer R, Sandhu D. Molecular mapping of D1, D2 and ms5 revealed linkage between the cotyledon color locus d2 and the male-sterile locus ms5 in soybean. Plants. 2013;2(3):441.
Article
PubMed
PubMed Central
Google Scholar
Speth B, Rogers JP, Boonyoo N, VanMeter AJ, Baumbach J, Ott A, Moore J, Cina T, Palmer R, Sandhu D. Molecular mapping of five soybean genes involved in male-sterility, female-sterility. Genome. 2015;58(4):143–9.
Article
CAS
PubMed
Google Scholar
Yang Y, Speth BD, Boonyoo N, Baumert E, Atkinson TR, Palmer RG, Sandhu D. Molecular mapping of three male-sterile, female-fertile mutants and generation of a comprehensive map of all known male sterility genes in soybean. Genome. 2014;57(3):155–60.
Article
CAS
PubMed
Google Scholar
Cervantes-Martinez I, Xu M, Zhang L, Huang Z, Kato KK, Horner HT, Palmer RG. Molecular mapping of male-sterility loci ms2 and ms9 in soybean. Crop Sci. 2007;47(1):374–9.
Article
CAS
Google Scholar
Cervantes-Martinez I, Sandhu D, Xu M, Ortiz-Pérez E, Kato KK, Horner HT, Palmer RG. The male sterility locus ms3 is present in a fertility controlling gene cluster in soybean. J Hered. 2009;100(5):565–70.
Article
CAS
PubMed
Google Scholar
Albertsen MC, Palmer RG. A comparative light- and electron- microscopic study of microsporogenesis in male sterile (MS
1) and male fertile soybeans (Glycine max (L.) Merr.). Am J Bot. 1979;66(3):253–65.
Article
Google Scholar
Graybosch RA, Palmer RG. Male sterility in soybean (Glycine max). II. Phenotypic expression of the ms4 mutant. Am J Bot. 1985;72(11):1751–64.
Article
Google Scholar
Jin W, Horner HT, Palmer RG. Genetics and cytology of a new genic male-sterile soybean [Glycine max (L.) Merr.]. Sex Plant Reprod. 1997;10(1):13–21.
Article
Google Scholar
Skorupska H, Palmer R. Genetics and cytology of the ms6 male-sterile soybean. J Hered. 1989;80(4):304–10.
Article
Google Scholar
Palmer R. Genetics of four male-sterile, female-fertile soybean mutants. Crop Sci. 2000;40(1):78–83.
Article
Google Scholar
Stelly DM, Palmer RG. A partially male-sterile mutant line of soybeans, Glycine max (L.) Merr.: characterization of the msp phenotype variation. Euphytica. 1980;29(3):539–46.
Article
Google Scholar
Delannay X, Palmer RG. Genetics and cytology of the ms4 male-sterile soybean. J Hered. 1982;73(3):219–23.
Article
Google Scholar
Yang X, Makaroff CA, Ma H. The Arabidopsis Male Meiocyte Death1 gene encodes a PHD-finger protein that is required for male meiosis. Plant Cell. 2003;15(6):1281–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andreuzza S, Nishal B, Singh A, Siddiqi I. The chromatin protein DUET/MMD1 controls expression of the meiotic gene TDM1 during male meiosis in Arabidopsis. PLoS Genet. 2015;11(9):e1005396.
Article
PubMed
PubMed Central
Google Scholar
Wang J, Niu B, Huang J, Wang H, Yang X, Dong A, Makaroff C, Ma H, Wang Y. The PHD finger protein MMD1/DUET ensures the progression of male meiotic chromosome condensation and directly regulates the expression of the condensin gene CAP-D3. Plant Cell. 2016;28(8):1894–909.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gasteiger E, Hoogland C, Gattiker A, Se D, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. In: Walker JM, Totowa NJ, editors. In: The Proteomics Protocols Handbook: Humana Press; 2005. p. 571–607.
Sanchez R, Zhou M-M. The PHD finger: A versatile epigenome reader. Trends Biochem Sci. 2011;36(7):364–72.
CAS
PubMed
PubMed Central
Google Scholar
Shen Y, Zhou Z, Wang Z, Li W, Fang C, Wu M, Ma Y, Liu T, Kong L-A, Peng D-L, et al. Global dissection of alternative splicing in paleopolyploid soybean. Plant Cell. 2014;26(3):996–1008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Golicz AA, Singh MB, Bhalla PL. The long intergenic noncoding RNA (LincRNA) landscape of the soybean genome. Plant Physiol. 2018;176(3):2133–47.
Article
CAS
PubMed
Google Scholar
Zhou H, Zhou M, Yang Y, Li J, Zhu L, Jiang D, Dong J, Liu Q, Gu L, Zhou L, et al. RNase ZS1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun. 2014;5:4884.
Article
CAS
PubMed
Google Scholar
Palmer RG, Gai J, Sun H, Burton JW. Production and evaluation of hybrid soybean. In: In: Plant Breed Rev. Inc: Wiley; 2001. p. 263–307.
Google Scholar
Frasch RM, Weigand C, Perez PT, Palmer RG, Sandhu D. Molecular mapping of 2 environmentally sensitive male-sterile mutants in soybean. J Hered. 2011;102(1):11–6.
Article
CAS
PubMed
Google Scholar
Shoemaker RC, Schlueter J, Doyle JJ. Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol. 2006;9(2):104–9.
Article
CAS
PubMed
Google Scholar
Schlueter JA, Lin JY, Schlueter SD, Vasylenko-Sanders IF, Deshpande S, Yi J, O'Bleness M, Roe BA, Nelson RT, Scheffler BE, et al. Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing. BMC Genomics. 2007;8:330.
Article
PubMed
PubMed Central
Google Scholar
Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science. 2000;290(5494):1151–5.
Article
CAS
PubMed
Google Scholar
Germplasm Resource Information Network - National Plant Germplasm System [https://www.ars-grin.gov/npgs/]. Accessed 19 Aug 2019.
Jensen WA. Botanical histochemistry: principles and practice. San Francisco: W. H. Freeman; 1962.
Google Scholar
Sandhu D, Gao H, Cianzio S, Bhattacharyya MK. Deletion of a disease resistance nucleotide-binding-site leucine-rich- repeat-like sequence is associated with the loss of the Phytophthora resistance gene Rps4 in soybean. Genetics. 2004;168(4):2157–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB. A new integrated genetic linkage map of the soybean. Theor Appl Genet. 2004;109(1):122–8.
Article
CAS
PubMed
Google Scholar
SoyBase: Integrating Genetics and Genomics to Advance Soybean Research [https://www.soybase.org/dlpages/index.php]. Accessed 19 Aug 2019.
Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987;1(2):174–81.
Article
CAS
PubMed
Google Scholar
Kosambi DD. The estimation of map distances from recombination values. Ann Eugenics. 1943;12(1):172–5.
Article
Google Scholar
WormWeb: Exon-Intron Graphic Maker [http://wormweb.org/exonintron]. Accessed 19 Aug 2019.
NCBI Conserved Domains Database [https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi]. Accessed 19 Aug 2019.
ExPASy: Bioinformatics Resource Portal [http://web.expasy.org/compute_pi/]. Accessed 19 Aug 2019.
NCBI Basic Local Alignment Search Tool [http://blast.ncbi.nlm.nih.gov/Blast.cgi]. Accessed 19 Aug 2019.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clough SJ, Bent AF. Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735–43.
Article
CAS
PubMed
Google Scholar
Sulusoglu M, Cavusoglu A. In vitro pollen viability and pollen germination in cherry laurel (
Prunus laurocerasus L.). Sci World J. 2014;2014:7.
Article
Google Scholar
Horner HT, Palmer RG. Mechanisms of genic male sterility. Crop Sci. 1995;35(6):1527–35.
Article
Google Scholar