Lewin R. No genome barriers to promiscuous DNA; the movement of DNA sequences between mitochondrial, chloroplast and nuclear genomes is even more prolific than had been expected. Science. 1984;224:970–1.
Article
CAS
Google Scholar
Martin W, Herrmann RG. Gene transfers from organelles to the nucleus: how much, what happens, and why? Plant Physiol. 1998;118:9–17.
Article
CAS
Google Scholar
Chen H, Yu Y, Chen X, Zhang Z, Gong C, Li J, Wang A. Plastid DNA insertions in plant nuclear genomes: the sites, abundance and ages, and a predicted promoter analysis. Funct Integr Genomics. 2015;15:131–9.
Article
CAS
Google Scholar
Lough AN, Roark LM, Kato A, Ream TS, Lamb JC, Birchler JA, Newton KJ. Mitochondrial DNA transfer to the nucleus generates extensive insertion site variation in maize. Genetics. 2008;178:47–55.
Article
CAS
Google Scholar
Martis MM, Klemme S, Banaei-Moghaddam AM, Blattner FR, Macas J, Schmutzer T, Scholz U, Gundlach H, Wicker T, Šimková H, Novák P, Neumann P, Kubaláková M, Bauer E, Haseneyer G, Fuchs J, Doležel J, Stein N, Mayer KFX, Houben A. Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. P Natl Acad Sciences USA. 2012;109:13343–6.
Article
CAS
Google Scholar
Michalovova M, Vyskot B, Kejnovsky E. Analysis of plastid and mitochondrial DNA insertions in the nucleus (NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization. Heredity. 2013;111:314–20.
Article
CAS
Google Scholar
Bensasson D, Zhang DX, Hartl DL, Hewitt GM. Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol Evol. 2001;16:314–21.
Article
CAS
Google Scholar
Hazkani-Covo E, Zeller RM, Martin W. Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet. 2010;6:e1000834.
Article
Google Scholar
Ko YJ, Kim S. Analysis of nuclear mitochondrial DNA segments of nine plant species: size, distribution, and insertion loci. Genomics Inform. 2016;14:90–5.
Article
Google Scholar
Yoshida T, Furihata HY, Kawabe A. Analysis of nuclear mitochondrial DNAs and factors affecting patterns of integration in plant species. Genes Genet Syst. 2017;92:27–33.
Article
CAS
Google Scholar
Smith DR, Crosby K, Lee RW. Correlation between nuclear plastid DNA abundance and plastid number supports the limited transfer window hypothesis. Genome Biol Evol. 2011;3:365–71.
Article
CAS
Google Scholar
Ayliffe MA, Scott NS, Timmis JN. Analysis of plastid DNA-like sequences within the nuclear genomes of higher plants. Mol Biol Evol. 1998;15:738–45.
Article
CAS
Google Scholar
Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. P Natl Acad Sciences USA. 2002;99:12246–51.
Article
CAS
Google Scholar
Shahmuradov IA, Akbarova YY, Solovyev VV, Aliyev JA. Abundance of plastid DNA insertions in nuclear genomes of rice and Arabidopsis. Plant Mol Biol. 2003;52:923–34.
Article
CAS
Google Scholar
Matsuo M, Ito Y, Yamauchi R, Obokata J. The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast-nuclear DNA flux. Plant Cell. 2005;17:665–75.
Article
CAS
Google Scholar
Yu X, Gabriel A. Patching broken chromosomes with extranuclear cellular DNA. Mol Cell. 1999;4:873–81.
Article
CAS
Google Scholar
Guo X, Ruan S, Hu W, Cai D, Fan L. Chloroplast DNA insertions into the nuclear genome of rice: the genes, sites and ages of insertion involved. Funct Integr Genomics. 2008;8:101–8.
Article
CAS
Google Scholar
Roark LM, Hui AY, Donnelly L, Birchler JA, Newton KJ. Recent and frequent insertions of chloroplast DNA into maize nuclear chromosomes. Cytogenet Genome Res. 2010;129:7–23.
Article
Google Scholar
Noutsos C, Richly E, Leister D. Generation and evolutionary fate of insertions of organelle DNA in the nuclear genomes of flowering plants. Genome Res. 2005;15:616–28.
Article
CAS
Google Scholar
Sheppard AE, Timmis JN. Instability of plastid DNA in the nuclear genome. PLoS Genet. 2009;5:e1000323.
Article
Google Scholar
Huang CY, Ayliffe MA, Timmis JN. Simple and complex nuclear loci created by newly transferred chloroplast DNA in tobacco. P Natl Acad Sciences USA. 2004;101:9710–5.
Article
CAS
Google Scholar
Wang D, Lloyd AH, Timmis JN. Environmental stress increases the entry of cytoplasmic organellar DNA into the nucleus in plants. P Natl Acad Sciences USA. 2012;109:2444–8.
Article
CAS
Google Scholar
Kejnovsky E, Kubat Z, Hobza R, Lengerova M, Sato S, Tabata S, Fukui K, Matsunaga S, Vyskot B. Accumulation of chloroplast DNA sequences on the Y chromosome of Silene latifolia. Genetica. 2006;128:167–75.
Article
CAS
Google Scholar
Steflova P, Hobza R, Vyskot B, Kejnovsky E. Strong accumulation of chloroplast DNA in the Y chromosomes of Rumex acetosa and Silene latifolia. Cytogenet Genome Res. 2014;142:59–65.
Article
CAS
Google Scholar
VanBuren R, Ming R. Organelle DNA accumulation in the recently evolved papaya sex chromosomes. Mol Gen Genomics. 2013;288:277–84.
Article
CAS
Google Scholar
Arumuganathan K, Earle ED. Nuclear DNA content of some important plant species. Plant Mol Biol Rep. 1991;9:208–18.
Article
CAS
Google Scholar
Ellison JH. Asparagus breeding. In: Bassett MJ, editor. Breeding vegetable crops. Westport: AVI; 1986. p. 523–68.
Google Scholar
Harkess A, Zhou J, Xu C, Bowers JE, der Hulst RV, Ayyampalayam S, Mercati F, Riccardi P, MR MK, Kakrana A, Tang H, Ray J, Groenendijk J, Arikit S, Mathioni SM, Nakano M, Shan H, Telgmann-Rauber A, Kanno A, Yue Z, Chen H, Li W, Chen Y, Xu X, Zhang Y, Luo S, Chen H, Gao J, Mao Z, Pires JC, Luo M, Kudrna D, Wing RA, Meyers BC, Yi K, Kong H, Lavrijsen P, Sunseri F, Falavigna A, Ye Y, Leebens-Mack JH, Chen G. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat Commun. 2017;8:1279.
Article
Google Scholar
Vyskot B, Hobza R. Gender in plants: sex chromosomes are emerging from the fog. Trends Genet. 2004;20:432–8.
Article
CAS
Google Scholar
Löptien H. Identification of the sex chromosome pair in asparagus (Asparagus officinalis L.). Z Pflanzenzuechtung. 1979;82:162–73.
Google Scholar
Uno Y. Haploid production from polyembryonic seeds of Asparagus officinalis L. Acta Hort. 2002;589:217–21.
Article
Google Scholar
Cho J, Paszkowski J. Regulation of rice root development by a retrotransposon acting as a microRNA sponge. Elife. 2017;6:e30038.
Article
Google Scholar
Bennetzen JL, Wang H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol. 2014;65:505–30.
Article
CAS
Google Scholar
Harkess A, Mercati F, Abbate L, McKain M, Pires JC, Sala T, Sunseri F, Falavigna A, Leebens-Mack J. Retrotransposon proliferation coincident with the evolution of dioecy in Asparagus. G3–Genes Genom Genet. 2016;6:2679–85.
CAS
Google Scholar
Li SF, Su T, Cheng GQ, Wang BX, Li X, Deng CL, Gao WJ. Chromosome evolution in connection with repetitive sequences and epigenetics in plant. Genes. 2017;8:290.
Article
Google Scholar
Ustyantsev K, Blinov A, Smyshlyaev G. Convergence of retrotransposons in oomycetes and plants. Mob DNA. 2017;8:4.
Article
Google Scholar
Hazkani-Covo E, Graur D. A comparative analysis of numt evolution in human and chimpanzee. Mol Biol Evol. 2007;24:13–8.
Article
CAS
Google Scholar
Schiavo G, Strillacci MG, Ribani A, Bovo S, Roman-Ponce SI, Cerolini S, Bertolini F, Bagnato A, Fontanesi L. Few mitochondrial DNA sequences are inserted into the Turkey (Meleagris gallopavo) nuclear genome: evolutionary analyses and informativity in the domestic lineage. Anim Genet. 2018;49:259–64.
Article
CAS
Google Scholar
Richly E, Leister D. NUPTs in sequenced eukaryotes and their genomic organization in relation to NUMTs. Mol Biol Evol. 2004;21:1972–80.
Article
CAS
Google Scholar
Yoshida T, Furihata H, Kawabe A. Patterns of genomic integration of nuclear chloroplast DNA fragments in plant species. DNA Res. 2014;21:127–40.
Article
CAS
Google Scholar
Schiavo G, Hoffmann OI, Ribani A, Utzeri VJ, Ghionda MC, Bertolini F, Geraci C, Bovo S, Fontanesi L. A genomic landscape of mitochondrial DNA insertions in the pig nuclear genome provides evolutionary signatures of interspecies admixture. DNA Res. 2017;24:487–98.
Article
CAS
Google Scholar
Huang CY, Grünheit N, Ahmadinejad N, Timmis JN, Martin W. Mutational decay and age of chloroplast and mitochondrial genomes transferred recently to angiosperm nuclear chromosomes. Plant Physiol. 2005;138:1723–33.
Article
CAS
Google Scholar
Yuan Q, Hill J, Hsiao J, Moffat K, Ouyang S, Cheng Z, Jiang J, Buell C. Genome sequencing of a 239-kb region of rice chromosome 10L reveals a high frequency of gene duplication and a large chloroplast DNA insertion. Mol Gen Genomics. 2002;267:713–20.
Article
CAS
Google Scholar
Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796–815.
Neumann P, Navrátilová A, Koblízkováž A, Kejnovský E, Hřibová E, Hobza R, Widmer A, Doležel J, Macas J. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA. 2011;2:4.
Article
CAS
Google Scholar
Liao Y, Zhang X, Li B, Liu T, Chen J, Bai Z, Wang M, Shi J, Walling JG, Wing RA, Jiang J, Chen M. Comparison of Oryza sativa and Oryza brachyantha genomes reveals selection-driven gene escape from the centromeric regions. Plant Cell. 2018;30:1729–44.
Article
CAS
Google Scholar
Ming R, Bendahmane A, Renner SS. Sex chromosomes in land plants. Annu Rev Plant Biol. 2011;62:485–514.
Article
CAS
Google Scholar
Sousa A, Bellot S, Fuchs J, Houben A, Renner SS. Analysis of transposable elements and organellar DNA in male and female genomes of a species with a huge Y chromosome reveals distinct Y centromeres. Plant J. 2016;88:387–96.
Article
CAS
Google Scholar
Li SF, Zhang GJ, Yuan JH, Deng CL, Gao WJ. Repetitive sequences and epigenetic modification: inseparable partners play important roles in the evolution of plant sex chromosomes. Planta. 2016;243:1083–95.
Article
CAS
Google Scholar
Hisanaga T, Okahashi K, Yamaoka S, Kajiwara T, Nishihama R, Shimamura M, Yamato KT, Bowman JL, Kohchi T, Nakajima K. A cis-acting bidirectional transcription switch controls sexual dimorphism in the liverwort. EMBO J. 2019;38:e100240.
Article
Google Scholar
Steele PR, Hertweck KL, Mayfield D, McKain MR, Leebens-Mack J, Pires JC. Quality and quantity of data recovered from massively parallel sequence: examples in Asparagus and Poaceae. Am J Bot. 2012;99:330–48.
Article
CAS
Google Scholar
Rychlik W. OLIGO 7 primer analysis software. Methods Mol Biol. 2007;402:35–60.
Article
CAS
Google Scholar
Li SF, Guo YJ, Li JR, Zhang DX, Wang BX, Li N, Deng CL, Gao WJ. The landscape of transposable elements and satellite DNAs in the genome of a dioecious plant spinach (Spinacia oleracea L.). Mobile DNA. Chromosom Res. 2019;10:3.
CAS
Google Scholar