Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 2000;290(5499):2105–10.
Article
CAS
PubMed
Google Scholar
Wray GA, Hahn MW, Ehab A, Balhoff JP, Margaret P, Rockman MV, Romano LA. The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol. 2003;20(9):1377–419.
Article
CAS
PubMed
Google Scholar
Green PJ, Kay SA, Chua NH. Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. EMBO J. 1987;6(9):2543–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu T. Comparative analysis of full-length cDNA sequences in Rice and comparison of trihelix transcription factor gene family between plants and animals: Shanghai Jiao Tong University; 2009.
Kaplan-Levy RN, Brewer PB, Tezz Q, Smyth DR. The trihelix family of transcription factors--light, stress and development. Trends Plant Sci. 2012;17(3):163–71.
Article
CAS
PubMed
Google Scholar
Nagano Y. Several features of the GT-factor trihelix domain resemble those of the Myb DNA-binding domain. Plant Physiol. 2000;124(2):491–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paulino PR, Diego Mauricio ROP, Corrêa LGG, Rensing SA, Birgit K, Bernd MR. PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res. 2010;38(Database issue):D822–7.
Google Scholar
Diego Mauricio ROP, Corrêa LGG, Raúl TE, Bernd MR. Green transcription factors: a chlamydomonas overview. Genetics. 2008;179(1):31–9.
Article
CAS
Google Scholar
He Z, Jinpu J, Liang T, Yi Z, Xiaocheng G, Ge G, Jingchu L. PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res. 2011;39(Database issue):D1114–7.
Google Scholar
Dehesh K, Hung H, Tepperman JM, Quail PH. GT-2: a transcription factor with twin autonomous DNA-binding domains of closely related but different target sequence specificity. EMBO J. 1992;11(11):4131–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le Gourrierec J, Li YF, Zhou DX. Transcriptional activation by Arabidopsis GT-1 may be through interaction with TFIIA-TBP-TATA complex. Plant J. 2010;18(6):663–8.
Article
Google Scholar
Ayadi M, Delaporte V, Li YF, Zhou DX. Analysis of GT-3a identifies a distinct subgroup of trihelix DNA-binding transcription factors in Arabidopsis. FEBS Lett. 2004;562(1–3):147–54.
Article
CAS
PubMed
Google Scholar
Gilmartin PM, Chua NH. Spacing between GT-1 binding sites within a light-responsive element is critical for transcriptional activity. Plant Cell. 1990;2(5):447–55.
CAS
PubMed
PubMed Central
Google Scholar
Fang Y, Xie K, Hou X, Hu H, Xiong L. Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses. Mgg Mol General Genet. 2010;283(2):157–69.
Article
CAS
Google Scholar
Yu C, Cai X, Ye Z, Li H. Genome-wide identification and expression profiling analysis of trihelix gene family in tomato. Biochem Biophys Res Commun. 2015;468(4):653–9.
Article
CAS
PubMed
Google Scholar
Wang W, Wu P, Liu TK, Ren H, Li Y, Hou X. Genome-wide analysis and expression divergence of the Trihelix family in brassica Rapa : insight into the evolutionary patterns in plants. Sci Rep. 2017;7(1):1–15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li H, Huang W, Liu ZW, Wu ZJ, Zhuang J. Trihelix family transcription factors in tea plant ( Camellia sinensis ): identification, classification, and expression profiles response to abiotic stress. Acta Physiol Plant. 2017;39(10):217–28.
Article
CAS
Google Scholar
Marina Borges O, Lauro BN, Graciela C, Andreia Carina TZ, Beatriz WS, Maria Helena BZ, Márcia MP. Identification and in silico characterization of soybean trihelix-GT and bHLH transcription factors involved in stress responses. Genet Mol Biol. 2012;35(1):233–46.
Google Scholar
Wang Z, Liu Q, Wang H, Zhang H, Xu X, Li C, Yang C. Comprehensive analysis of trihelix genes and their expression under biotic and abiotic stresses in Populus trichocarpa. Sci Rep. 2016;6:36274–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuhn RM, Caspar T, Dehesh K, Quail PH. DNA binding factor GT-2 from Arabidopsis. Plant Mol Biol. 1993;23(2):337–48.
Article
CAS
PubMed
Google Scholar
Xie ZM, Zou HF, Lei G, Wei W, Zhou QY, Niu CF, Liao Y, Tian AG, Ma B, Zhang WK. Soybean Trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis. PLoS One. 2009;4(9):e6898–912.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou DX. Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci. 1999;4(6):210–4.
Article
CAS
PubMed
Google Scholar
Ni M, Dehesh K, Tepperman JM, Quail PH. GT-2: in vivo transcriptional activation activity and definition of novel twin DNA binding domains with reciprocal target sequence selectivity. Plant Cell. 1996;8(6):1041–59.
CAS
PubMed
PubMed Central
Google Scholar
Dehesh K, Smith LG, Tepperman JM, Quail PH. Twin autonomous bipartite nuclear localization signals direct nuclear import of GT-2. Plant J Cell Mol Biol. 2010;8(1):25–36.
Article
Google Scholar
Xin L, Genji Q, Zhangliang C, Hongya G, Li-Jia Q. A gain-of-function mutation of transcriptional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis. Plant Mol Biol. 2008;66(3):315–27.
Article
CAS
Google Scholar
Brewer PB, Howles PA, Kristen D, Griffith ME, Tetsuya I, Kaplan-Levy RN, Aydin K, Smyth DR. PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower. Development. 2004;131(16):4035–45.
Article
CAS
PubMed
Google Scholar
Griffith ME, da Silva Conceição A, Smyth DR. PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower. Development. 2000;126(24):5635–44.
Google Scholar
Christian B, Ayako K, Takanari I, Rumi TW, Takuji W, Youichi K, Shu M, Minami M, Keiko S. The trihelix transcription factor GTL1 regulates ploidy-dependent cell growth in the Arabidopsis trichome. Plant Cell. 2009;21(8):2307–22.
Article
CAS
Google Scholar
Iris T, Rosanna PM, Allan D, Michael B, Rebecca R, Steven H, T Colleen S, John ME, George A, David P. Identification of genes required for embryo development in Arabidopsis. Plant Physiol. 2004;135(3):1206–20.
Article
Google Scholar
Barr MS, Willmann MR, Jenik PD. Is there a role for trihelix transcription factors in embryo maturation? Plant Signal Behav. 2012;7(2):205–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xi J, Qiu Y, Du L, Poovaiah BW. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses. Plant Sci. 2012;185-186(4):274–80.
Article
CAS
PubMed
Google Scholar
Yul YC, Pence HE, Bo JJ, Kenji M, Gosney MJ, Hasegawa PM, Mickelbart MV. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. Plant Cell. 2010;22(12):4128–41.
Article
CAS
Google Scholar
Wang XH, Li QT, Chen HW, Zhang WK, Ma B, Chen SY, Zhang JS. Trihelix transcription factor GT-4 mediates salt tolerance via interaction with TEM2 in Arabidopsis. BMC Plant Biol. 2014;14(1):339–52.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zinn J. On variation in Tartary buckwheat, Fagopyrum Tataricum (L.) Gaertn. Proc Natl Acad Sci U S A. 1919;5(11):506–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu F. Chemical composition and health effects of Tartary buckwheat. Food Chem. 2016;203:231–45.
Article
CAS
PubMed
Google Scholar
Bonafaccia G, Gambelli L, Fabjan N, Kreft I. Trace elements in flour and bran from common and tartary buckwheat. Food Chem. 2003;83(1):1–5.
Article
CAS
Google Scholar
Gao YT, Gan-Peng LI, Zheng-Quan LI, Tang GY, Zhang BT. Study on extraction of Total flavonoids from Tartary buckwheat seedling using ultrasonic coupled with propyl alcohol-ammonium sulfate aqueous two-phase separation and antioxidant activity of Total flavonoids extract. Food Sci. 2009;30(2):110–3.
CAS
Google Scholar
Nina F, Janko R, Iztok Joze K, Zhuanhua W, Zheng Z, Ivan K. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. J Agric Food Chem. 2003;51(22):6452–5.
Article
CAS
Google Scholar
Chia-Ling L, Yih-Shyuan C, Joan-Hwa Y, Been-Huang C. Antioxidant activity of tartary (Fagopyrum tataricum (L.) Gaertn.) and common (Fagopyrum esculentum moench) buckwheat sprouts. J Agric Food Chem. 2008;56(1):173–8.
Article
CAS
Google Scholar
Holasova M, Fiedlerova VH, Orsak M, Lachman J, Vavreinova S. Buckwheat - the source of antioxidant activity in functional foods. Food Res Int 2002, 35(2–3):0–211.
Article
CAS
Google Scholar
Kreft S, Štrukelj B, Gaberščik A, Kreft I. Rutin in buckwheat herbs grown at different UV-B radiation levels: comparison of two UV spectrophotometric and an HPLC method. J Exp Bot. 2002;53(375):1801–4.
Article
CAS
PubMed
Google Scholar
Yao Y, Xuan Z, Li Y, He Y, Korpelainen H, Li C. Effects of ultraviolet-B radiation on crop growth, development, yield and leaf pigment concentration of tartary buckwheat (Fagopyrum tataricum) under field conditions. Eur J Agron. 2006;25(3):215–22.
Article
CAS
Google Scholar
Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MS, Wang L. The phenylpropanoid pathway and plant defence-a genomics perspective. Mol Plant Pathol. 2010;3(5):371–90.
Article
Google Scholar
Wójcicki J, Barcew-Wiszniewska B, Samochowiec L, Rózewicka L. Extractum Fagopyri reduces atherosclerosis in high-fat diet fed rabbits. Pharmazie. 1995;50(8):560–2.
PubMed
Google Scholar
Watanabe M. Catechins as antioxidants from buckwheat (Fagopyrum esculentum Moench) groats. Jagricfood Chem. 1998;46(3):839–45.
CAS
Google Scholar
Zfass HS. Rutin in the treatment of increased capillary fragility; a preliminary report. Virginia Med Monthly. 1947;74(2):56–62.
CAS
PubMed
Google Scholar
Bonafaccia G, Marocchini M, Kreft I. Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chem. 2003;80(1):9–15.
Article
CAS
Google Scholar
Eggum BO, Kreft I, Javornik B. Chemical composition and protein quality of buckwheat ( Fagopyrum esculentum Moench). Plant Foods Hum Nutr. 1980;30(3–4):175–9.
CAS
Google Scholar
Zhou X, Hao T, Zhou Y, Tang W, Xiao Y, Meng X, Fang X. Relationships between antioxidant compounds and antioxidant activities of tartary buckwheat during germination. J Food Sci Technol. 2015;52(4):2458–63.
Article
CAS
PubMed
Google Scholar
Zhou Y, Hong W, Cui L, Zhou X, Wen T, Song X. Evolution of nutrient ingredients in tartary buckwheat seeds during germination. Food Chem. 2015;186:244–8.
Article
CAS
Google Scholar
Qin PY, Wang QA, Shan F, Hou ZH, Ren GX. Nutritional composition and flavonoids content of flour from different buckwheat cultivars. Int J Food Sci Technol. 2010;45(5):951–8.
Article
CAS
Google Scholar
Liu M, Ma Z, Wang A, Zheng T, Huang L, Sun W, Zhang Y, Jin W, Zhan J, Cai Y, et al. Genome-wide investigation of the auxin response factor gene family in Tartary buckwheat (Fagopyrum tataricum). Int J Mol Sci. 2018;19(11):3526–44.
Article
PubMed Central
CAS
Google Scholar
Liu M, Fu Q, Ma Z, Sun W, Huang L, Wu Q, Tang Z, Bu T, Li C, Chen H. Genome-wide investigation of the MADS gene family and dehulling genes in tartary buckwheat (Fagopyrum tataricum). Planta. 2019;1:1–18.
CAS
Google Scholar
Liu M, Sun W, Ma Z, Zheng T, Huang L, Wu Q, Zhao G, Tang Z, Bu T, Li C, et al. Genome-wide investigation of the AP2/ERF gene family in tartary buckwheat (Fagopyum Tataricum). BMC Plant Biol. 2019;19(1):84–102.
Article
PubMed
PubMed Central
Google Scholar
Liu M, Ma Z, Sun W, Huang L, Wu Q, Tang Z, Bu T, Li C, Chen H. Genome-wide analysis of the NAC transcription factor family in Tartary buckwheat (Fagopyrum tataricum). BMC Genomics. 2019;20(1):113–28.
Article
PubMed
PubMed Central
Google Scholar
Zhang L, Li X, Ma B, Gao Q, Du H, Han Y, Li Y, Cao Y, Qi M, Zhu Y. The Tartary buckwheat genome provides insights into Rutin biosynthesis and abiotic stress tolerance. Mol Plant. 2017;10(9):1224–37.
Article
CAS
PubMed
Google Scholar
Eddy SR. Profile hidden Markov models. Bioinformatics. 1998.
Krzywinski M, Schein JI. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yupeng W, Haibao T, Jeremy D D, Xu T, Jingping L, Xiyin W, Tae-ho L, Huizhe J, Barry M, Hui G: MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity 2012, 40(7):e49-e49.
Liu C, Xie T, Chen C, Luan A, Long J, Li C, Ding Y, He Y. Genome-wide organization and expression profiling of the R2R3-MYB transcription factor family in pineapple (Ananas comosus). BMC Genomics. 2017;18(1):503–18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu M, Ma Z, Zheng T, Sun W, Zhang Y, Jin W, Zhan J, Cai Y, Tang Y, Wu Q. Insights into the correlation between Physiological changes in and seed development of tartary buckwheat ( Fagopyrum tataricum Gaertn). BMC Genomics. 2018;19(1):648–68.
Article
PubMed
PubMed Central
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔ C T method. Methods-A Companion To Methods in Enzymology. 2001;25(4):402–8.
Article
CAS
Google Scholar
Cannon SB, Mitra A, Baumgarten A, Young ND, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004;4(1):10–30.
Article
PubMed
PubMed Central
Google Scholar
Song C, Xiang DB, Yan L, Song Y, Zhao G, Wang YH, Zhang BL. Changes in seed growth, levels and distribution of flavonoids during tartary buckwheat seed development. Plant Prod Sci. 2016;19(4):1–10.
Article
CAS
Google Scholar
Liu M, Ma Z, Zheng T, Wang J, Huang L, Sun W, Zhang Y, Jin W, Zhan J, Cai Y, et al. The potential role of auxin and abscisic acid balance and FtARF2 in the final size determination of Tartary buckwheat fruit. Int J Mol Sci. 2018;19(9):2755–74.
Article
PubMed Central
CAS
Google Scholar
Song A, Gao T, Dan W, Xin J, Chen S, Guan Z, Wang H, Jin L, Chen F. Transcriptome-wide identification and expression analysis of chrysanthemum SBP-like transcription factors. Plant Physiol Biochem. 2016;17(2):10–6.
Article
CAS
Google Scholar
Zhang S, Xu R, Luo X, Jiang Z, Shu H. Genome-wide identification and expression analysis of MAPK and MAPKK gene family in Malus domestica. Gene. 2013;531(2):377–87.
Article
CAS
PubMed
Google Scholar
Liu J, Chen N, Chen F, Cai B, Santo SD, Tornielli GB, Pezzotti M, Cheng ZM. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine ( Vitis vinifera ). BMC Genomics. 2014;15(1):281–98.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kumar R, Tyagi AK, Sharma AK. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Mol Genet Genomics. 2011;285(3):245–60.
Article
CAS
PubMed
Google Scholar
Lynch J. Root architecture and plant productivity. Plant Physiol. 1995;109(1):7–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuromori T, Wada T, Kamiya A, Yuguchi M, Yokouchi T, Imura Y, Takabe H, Sakurai T, Akiyama K, Hirayama T. A trial of phenome analysis using 4000 ds-insertional mutants in gene-coding regions of Arabidopsis. Plant J Cell Mol Biol. 2010;47(4):640–51.
Article
CAS
Google Scholar
Seiji T, Noritaka M, Kiyotaka O. RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana. Development. 2004;131(2):425–34.
Google Scholar
Markus S, Davison TS, Henz SR, Pape UJ, Monika D, Martin V, Bernhard SL, Detlef W, Lohmann JU. A gene expression map of Arabidopsis thaliana development. Nat Genet. 2005;37(5):501–6.
Article
CAS
Google Scholar
Ming-Jun G, Lydiate DJ, Xiang L, Helen L, Branimir G, Hegedus DD, Kevin R. Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell. 2009;21(1):54–71.
Article
CAS
Google Scholar
Willmann MR, Mehalick AJ, Packer RL, Jenik PD. MicroRNAs regulate the timing of embryo maturation in Arabidopsis. Plant Physiol. 2011;155(4):1871–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ming-Jun G, Xiang L, Helen L, Gropp GM, Lydiate DD, Shu W, Hegedus DD. ASIL1 is required for proper timing of seed filling in Arabidopsis. Plant Signal Behav. 2011;6(12):1886–8.
Article
CAS
Google Scholar