Wu P, Shou H, Xu G, Lian X. Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Curr Opin Plant Biol. 2013;16:205–12.
Article
CAS
Google Scholar
Carlos CV, Fulgencio AC, June SW, Luis HE. Maize under phosphate limitation. Handbook of Maize: Its Biology. New York: Springer; 2009. p. 381–404.
Google Scholar
Ren P, Meng Y, Li B, Ma X, Si E, Lai Y, Wang J, Yao L, Yang K, Shang X, Wang H. Molecular mechanisms of acclimatization to phosphorus starvation and recovery underlying full-length transcriptome profiling in barley (Hordeum vulgare L.) front. Plant Sci. 2018;9:500.
Google Scholar
Yamaji N, Takemoto Y, Miyaji T, Mitani-Ueno N, Yoshida KT, Ma JF. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Nature. 2016;541:92–5.
Article
Google Scholar
Syers JK, Johnston AE, Curtin D. Efficiency of soil and fertilizer phosphorus use. FAO Fertilizer Plant Nutr Bull. 2008;18:1–4.
Vance CP, Uhde-Stone C, Allan DL. Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003;157:423–47.
Article
CAS
Google Scholar
Bisson C, Adams NB, Stevenson B, Brindley AA, Polyviou D, Bibby TS, Baker PJ, Hunter CN, Hitchcock A. The molecular basis of phosphite and hypophosphite recognition by ABC-transporters. Nat Commun. 2017;8:1746.
Article
Google Scholar
Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, SkrumsagerMøller I, White P. Chapter 6: functions of macronutrients. In: Marschner P, editor. Marschner’s mineral nutrition of higher plants. 3rd ed. London: Academic Press; 2012. p. 135–89.
Chapter
Google Scholar
Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F. Phosphorus dynamics: from soil to plant. Plant Physiol. 2011;156:997–1005.
Article
CAS
Google Scholar
Heuer S, Gaxiola R, Schilling R, Herrera-Estrella L, López-Arredondo D, Wissuwa M, Delhaize E, Rouached H. Improving phosphorus use efficiency: a complex trait with emerging opportunities. Plant J. 2017;90(5):868–85.
Article
CAS
Google Scholar
Gu M, Chen A, Sun S, Xu G. Complex regulation of plant phosphate transporters and the gap between molecular mechanisms and practical application: what is missing? Mol Plant. 2016;9:396–416.
Article
CAS
Google Scholar
Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu G. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J. 2009;57:798–809.
Article
CAS
Google Scholar
Guo B, Jin Y, Wussler C, Blancaflor E.B, Motes CM., Versaw WK. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol 2008;177:889–898.
Article
CAS
Google Scholar
Versaw WK, Harrison MJ. A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell. 2002;14:1751–66.
Article
CAS
Google Scholar
Zhao LM, Versaw WK, Liu JY, Harrison MJ. A phosphate transporter from Medicago truncatula is expressed in the photosynthetic tissues of the plant and located in the chloroplast envelop. New Phytol. 2003;157:291–302.
Article
CAS
Google Scholar
Arpat AB, Magliano P, Wege S, Rouached H, Stefanovic A, Poirier Y. Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate. Plant J. 2012;71:479–91.
CAS
PubMed
Google Scholar
Stefanovic A, Arpat AB, Bligny R, Gout E, Vidoudez C, Bensimon M, Poirier Y. Over-expression of PHO1 in Arabidopsis leaves reveals its role in mediating phosphate efflux. Plant J. 2011;66:689–99.
Article
CAS
Google Scholar
Wege S, Khan GA, Jung JY, Vogiatzaki E, Pradervand S, Aller I, Meyer AJ, Poirier Y. The EXS domain of PHO1 participates in the response of shoots to phosphate deficiency via a root-to-shoot signal. Plant Physiol. 2015;170:385–400.
Article
Google Scholar
Wang C, Huang W, Ying Y, Li S, Secco D, Tyerman S, Whelan J, Shou H. Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves. New Phytol. 2012;196:139–48.
Article
CAS
Google Scholar
Wang C, Yue W, Ying Y, Wang S, Secco D, Liu Y, Whelan J, Tyerman SD, Shou H. Rice SPX-major facility superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in rice. Plant Physiol. 2015;169:2822–31.
CAS
PubMed
PubMed Central
Google Scholar
Lin SI, Santi C, Jobet E, Lacut E, El Kholti N, Karlowski WM, Verdeil JL, Breitler JC, Périn C, Ko SS, Guiderdoni E, Chiou TJ, Echeverria M. Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant Cell Physiol. 2010;51:2119–31.
Article
CAS
Google Scholar
Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL. Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell. 2006;18:412–21.
Article
CAS
Google Scholar
Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK. A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol. 2005;15:2038–43.
Article
CAS
Google Scholar
Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, Chiou TJ. Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol. 2008;147:732–46.
Article
CAS
Google Scholar
Bari R, Pant BD, Stitt M, Scheible WR. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 2006;141:988–99.
Article
CAS
Google Scholar
González E, Solano R, Rubio V, Leyva A, Paz-Ares J. PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plantspecific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell. 2005;17:3500–12.
Article
Google Scholar
Chiou TJ, Lin SI. Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol. 2011;3:21–34.
Google Scholar
Shi T, Li R, Zhao Z, Ding G, Long Y, Meng J, Xu F, Shi L. QTL for yield traits and their association with functional genes in response to phosphorus deficiency in Brassica napus. PLoS One. 2013;8:e54559.
Article
CAS
Google Scholar
Zhang G, Wang X, Wang B, Tian Y, Li M, Nie Y, Peng Q, Wang Z. Fine mapping a major QTL for kernel number per row under different phosphorus regimes in maize (Zea mays L.). Theor Appl Genet. 2013;126:1545–53.
Article
CAS
Google Scholar
Zhang K, Wang J, Zhang L, Rong C, Zhao F, Peng T, Li H, Cheng D, Liu X, Qin H, Zhang A, Tong Y, Wang D. Association analysis of genomic loci important for grain weight control in elite common wheat varieties cultivated with variable water and fertiliser supply. PLoS One. 2013;8:e57853.
Article
CAS
Google Scholar
Lynch JP. Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture. Plant Cell Environ. 2015;38:1775–84.
Article
Google Scholar
Nevo E, Chen G. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ. 2010;33:670–85.
Article
CAS
Google Scholar
Dai F, Nevo E, Wu DZ, Comadran J, Zhou MX, Qiu L, Chen ZH, Beiles A, Chen GX, Zhang GP. Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci U S A. 2012;109:16969–73.
Article
CAS
Google Scholar
Cai S, Wu D, Jabeen Z, Huang Y, Huang Y, Zhang G. Genome-wide association analysis of aluminum tolerance in cultivated and Tibetan wild barley. PLoS One. 2013;8:e69776.
Article
CAS
Google Scholar
Quan X, Zeng J, Ye L, Chen G, Han Z, Shah JM, Zhang G. Transcriptome profiling analysis for two Tibetan wild barley genotypes in responses to low nitrogen. BMC Plant Biol. 2016;16:30.
Article
Google Scholar
Wu DZ, Shen QF, Cai SG, Chen ZH, Dai F, Zhang GP. Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley. Plant Cell Physiol. 2013;54:1976–88.
Article
CAS
Google Scholar
Zhao J, Sun H, Dai HX, Zhang GP, Wu FB. Difference in response to drought stress among Tibet wild barley genotypes. Euphytica. 2010;172:395–403.
Article
CAS
Google Scholar
Nadira UA, Ahmed IM, Zeng J, Wu F, Zhang G. Identification of the differentially accumulated proteins associated with low phosphorus tolerance in a Tibetan wild barley accession. J Plant Physiol. 2016;198:10–22.
Article
CAS
Google Scholar
Zeng J, He X, Wu D, Zhu B, Cai S, Nadira UA, Jabeen Z, Zhang G. Comparative transcriptome profiling of two Tibetan wild barley genotypes in responses to low potassium. PLoS One. 2014;9:e100567.
Article
Google Scholar
Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS. Responses of root architecture development to low phosphorus availability: a review. Ann Bot. 2013;112:391–408.
Article
CAS
Google Scholar
Gong X, McDonald G. QTL mapping of root traits in phosphorus-deficient soils reveals important genomic regions for improving NDVI and grain yield in barley. Theor Appl Genet. 2017;130:1–18.
Article
Google Scholar
Gong X, Wheeler R, Bovill WD, McDonald GK. QTL mapping of grain yield and phosphorus efficiency in barley in a Mediterranean-like environment. Theor Appl Genet. 2016;129:1657–72.
Article
CAS
Google Scholar
Wang X, Chen Y, Thomas CL, Ding G, Xu P, Shi D, Grandke F, Jin K, Cai H, Xu F, Yi B. BroadleyMR, Shi L. Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply. DNA Res. 2017;24:407–17.
Article
CAS
Google Scholar
Sandhu N, Anitha Raman K, Torres RO, Audebert A, Dardou A, Kumar A, Henry A. Rice root architectural plasticity traits and genetic regions for adaptability to variable cultivation and stress conditions. Plant Physiol. 2016;171:2562–76.
CAS
PubMed
PubMed Central
Google Scholar
Gruber BD, Giehl RFH, Friedel S, von Wirén N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 2013;163:161–79.
Article
CAS
Google Scholar
Zhu J, Kaeppler SM, Lynch JP. Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theor Appl Genet. 2005;111:688–95.
Article
CAS
Google Scholar
Wissuwa M, Yano M, Ae N. Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet. 1998;97:777–83.
Article
CAS
Google Scholar
Wissuwa M, Wegner J, Ae N, Yano M. Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet. 2002;105:890–7.
Article
CAS
Google Scholar
Chin JH, Gamuyao R, Dalid C, Bustamam M, Prasetiyono J, Moeljopawiro S, Wissuwa M, Heuer S. Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiol. 2011;156:1202–16.
Article
CAS
Google Scholar
Chin JH, Lu X, Haefele SM, Gamuyao R, Ismail A, Wissuwa M, Heuer S. Development and application of gene-based markers for the major rice QTL Phosphorus uptake 1. Theor Appl Genet. 2010;120:1073–86.
Article
CAS
Google Scholar
Heuer S, Lu X, Chin JH, Tanaka JP, Kanamori H, Matsumoto T, De Leon T, Ulat VJ, Ismail AM, Yano M, Wissuwa M. Comparative sequence analyses of the major quantitative trait locus phosphorus uptake 1 (Pup1) reveal a complex genetic structure. Plant Biotechnol J. 2009;7:456–71.
Article
CAS
Google Scholar
Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature. 2012;488:535–9.
Article
CAS
Google Scholar
Cheng Q, Li N, Dong L, Zhang D, Fan S, Jiang L, Wang X, Xu P, Zhang S. Overexpression of soybean Isoflavone reductase (GmIFR) enhances resistance to Phytophthora sojae in soybean. Front Plant Sci. 2015;6:1024.
PubMed
PubMed Central
Google Scholar
Rípodas C, Via VD, Aguilar OD, Zanetti ME, Blanco FA. Knock-down of a member of the isoflavone reductase gene family impairs plant growth and nodulation in Phaseolus vulgaris. Plant Physiol Bioch. 2013;68:81–9.
Article
Google Scholar
Kim SG, Kim ST, Wang YM, Kim SK, Lee CH, Kim KK. Overexpression of rice isoflavone reductase-like gene (OsIRL) confers tolerance to reactive oxygen species. Physiol Plant. 2010;138:1–9.
Article
CAS
Google Scholar
Naeem M, Khan MMA. Phosphorus ameliorates crop productivity, photosynthesis, nitrate reductase activity and nutrient accumulation in coffee senna (Senna occidentalis L.) under phosphorus-deficient soil. J Plant Interact. 2009;4:145–53.
Article
CAS
Google Scholar
Jing JY, Rui YK, Zhang FS, Rengel Z, Shen JB. Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crop Res. 2010;119:355–64.
Article
Google Scholar
Liu J, An X, Cheng L, Chen F, Bao J, Yuan L, Zhang F, Mi G. Auxin transport in maize roots in response to localized nitrate supply. Ann Bot. 2010;106:1019–26.
Article
CAS
Google Scholar
Hu B, Jiang Z, Wang W, Qiu Y, Zhang Z, Liu Y, Li A, Gao X, Liu L, Qian Y, et al. Nitrate–NRT1.1B–SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat Plants. 2019;5(4):401.
Article
CAS
Google Scholar
Gu R, Chen F, Long L, Cai H, Liu Z, Yang J, Wang L, Li H, Li J, Liu W, Mi G, Zhang F, Yuan L. Enhancing phosphorus uptake efficiency through QTL-based selection for root system architecture in maize. J Genet Genomics. 2016;43:663–72.
Article
Google Scholar
Wissuwa M. How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiol. 2003;133:1947–58.
Article
CAS
Google Scholar
Byrne SL, Foito A, Hedley PE, Morris JA, Stewart D, Barth S. Early response mechanisms of perennial ryegrass (Lolium perenne) to phosphorus deficiency. Ann Bot. 2011;107:243–54.
Article
CAS
Google Scholar
Gaude N, Nakamura Y, Scheible W-R, Ohta H, Dormann P. Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J. 2008;56:28–39.
Article
CAS
Google Scholar
Shen Q, Yu J, Fu L, Wu L, Dai F, Jiang L, Wu D, Zhang G. Ionomic, metabolomic and proteomic analyses reveal molecular mechanisms of root adaption to salt stress in Tibetan wild barley. Plant Physiol Biochem. 2018;123:319–30.
Article
CAS
Google Scholar
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11(3):R25.
Article
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
Google Scholar
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.
Article
CAS
Google Scholar
Ye L, Huang Y, Hu H, Dai F, Zhang G. Identification of QTLs associated with haze active proteins in barley. Euphytica. 2015;205:799–807.
Article
CAS
Google Scholar