Shull GH. The composition of a field of maize. J Hered. 1908;4(1):296–301.
Article
Google Scholar
Birchler JA, Auger DL, Riddle NC. In search of the molecular basis of heterosis. Plant Cell. 2003;15(10):2236–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swanson-Wagner RA, Jia Y, Decook R, Borsuk LA, Nettleton D, Schnable PS. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc Natl Acad Sci U S A. 2006;103(18):6805–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bruce AB. The mendelian theory of heredity and the augmentation of vigor. Science. 1910;32(827):627–8.
Article
CAS
PubMed
Google Scholar
Jones DF. Dominance of linked factors as a means of accounting for heterosis. Proc Natl Acad Sci U S A. 1917;3(4):310–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA. Heterosis. Plant Cell. 2010;22(7):2105–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hochholdinger F, Hoecker N. Towards the molecular basis of heterosis. Trends Plant Sci. 2007;12(9):427–32.
Article
CAS
PubMed
Google Scholar
Richey FD. Mock-dominance and hybrid vigor. Science. 1942;96(2490):280–1.
Article
CAS
PubMed
Google Scholar
Shang L, Liang Q, Wang Y, Zhao Y, Wang K, Hua J. Epistasis together with partial dominance, over-dominance and QTL by environment interactions contribute to yield heterosis in upland cotton. Theor Appl Genet. 2016;129(7):1429–46.
Article
PubMed
Google Scholar
Krieger U, Lippman ZB, Zamir D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet. 2010;42(5):459–63.
Article
CAS
PubMed
Google Scholar
Swanson-Wagner RA, DeCook R, Jia Y, Bancroft T, Ji T, Zhao X, et al. Paternal dominance of trans-eQTL influences gene expression patterns in maize hybrids. Science. 2009;326(5956):1118–20.
Article
CAS
PubMed
Google Scholar
Zhou G, Chen Y, Yao W, Zhang C, Xie W, Hua J, et al. Genetic composition of yield heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A. 2012;109(39):15847–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo LJ, Li ZK, Mei HW, Shu QY, Tabien R, Zhong DB, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression. II Grain yield components Genetics. 2001;158(4):1755–71.
CAS
PubMed
Google Scholar
Song R, Messing J. Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci U S A. 2003;100(15):9055–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paschold A, Jia Y, Marcon C, Lund S, Larson NB, Yeh CT, et al. Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents. Genome Res. 2012;22(12):2445–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhai R, Feng Y, Wang H, Zhan X, Shen X, Wu W, et al. Transcriptome analysis of rice root heterosis by RNA-Seq. BMC Genomics. 2013;14:19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uzarowska A, Keller B, Piepho HP, Schwarz G, Ingvardsen C, Wenzel G, et al. Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height. Plant Mol Biol. 2007;63(1):21–34.
Article
CAS
PubMed
Google Scholar
Li X, Wei Y, Nettleton D, Brummer EC. Comparative gene expression profiles between heterotic and non-heterotic hybrids of tetraploid Medicago sativa. BMC Plant Biol. 2009;9:107.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wei G, Tao Y, Liu G, Chen C, Luo R, Xia H, et al. A transcriptomic analysis of superhybrid rice LYP9 and its parents. Proc Natl Acad Sci U S A. 2009;106(19):7695–701.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang TF, Li B, Zhang DF, Jia GQ, Li ZY, Wang SC. Genome-wide transcriptional analysis of yield and heterosis-associated genes in maize (Zea mays L.). J Integr Agri. 2012;11(8):1245–56.
Article
CAS
Google Scholar
Vuylsteke M, van Eeuwijk F, Van Hummelen P, Kuiper M, Zabeau M. Genetic analysis of variation in gene expression in Arabidopsis thaliana. Genetics. 2005;171(3):1267–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoecker N, Keller B, Muthreich N, Chollet D, Descombes P, Piepho HP, et al. Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcriptomes suggests organ-specific patterns of nonadditive gene expression and conserved expression trends. Genetics. 2008;179(3):1275–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marcon C, Paschold A, Malik WA, Lithio A, Baldauf JA, Altrogge L, et al. Stability of single-parent gene expression complementation in maize hybrids upon water deficit stress. Plant Physiol. 2017;173(2):1247–57.
Article
CAS
PubMed
Google Scholar
Auger DL, Gray AD, Ream TS, Kato A, Coe EH Jr, Birchler JA. Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics. 2005;169(1):389–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyer S, Pospisil H, Scholten S. Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern. Plant Mol Biol. 2007;63(3):381–91.
Article
CAS
PubMed
Google Scholar
Li H, Liu T, Cao Y, Wang L, Zhang Y, Li J, et al. Transcriptomic analysis of maize mature embryos from an elite maize hybrid Zhengdan958 and its parental lines. Plant Growth Regul. 2015;76(3):315–25.
Article
CAS
Google Scholar
Araus JL, Sánchez C, Cabrera-Bosquet L. Is heterosis in maize mediated through better water use? New Phytol. 2010;187(2):392–406.
Article
CAS
PubMed
Google Scholar
Suwa R, Hakata H, Hara H, El-Shemy HA, Adu-Gyamfi JJ, Nguyen NT, et al. High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiol Biochem. 2010;48(2–3):124–30.
Article
CAS
PubMed
Google Scholar
Prasad PVV, Pisipati SR, Momčilović I, Ristic Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J Agron Crop Sci. 2011;197(6):430–41.
Article
CAS
Google Scholar
Zandalinas SI, Mittler R, Balfagon D, Arbona V, Gomez-Cadenas A. Plant adaptations to the combination of drought and high temperatures. Physiol Plant. 2018;162(1):2–12.
Article
CAS
PubMed
Google Scholar
Zhang X, Rerksiri W, Liu A, Zhou X, Xiong H, Xiang J, et al. Transcriptome profile reveals heat response mechanism at molecular and metabolic levels in rice flag leaf. Gene. 2013;530(2):185–92.
Article
CAS
PubMed
Google Scholar
González-Schain N, Dreni L, Lawas LM, Galbiati M, Colombo L, Heuer S, et al. Genome-wide transcriptome analysis during anthesis reveals new insights into the molecular basis of heat stress responses in tolerant and sensitive rice varieties. Plant Cell Physiol. 2016;57(1):57–68.
Article
PubMed
CAS
Google Scholar
Li T, Xu X, Li Y, Wang H, Li Z, Li Z. Comparative transcriptome analysis reveals differential transcription in heat-susceptible and heat-tolerant pepper (Capsicum annum L.) cultivars under heat stress. J Plant Biol. 2015;58(6):411–24.
Article
CAS
Google Scholar
Wang Q, Zha K, Chai W, Wang Y, Liu B, Jiang H, et al. Functional analysis of the HD-zip I gene ZmHDZ1 in ABA-mediated salt tolerance in rice. J Plant Biol. 2017;60(2):207–14.
Article
CAS
Google Scholar
Zhao Y, Ma Q, Jin X, Peng X, Liu J, Deng L, et al. A novel maize homeodomain-leucine zipper (HD-zip) I gene, Zmhdz10, positively regulates drought and salt tolerance in both rice and Arabidopsis. Plant Cell Physiol. 2014;55(6):1142–56.
Article
CAS
PubMed
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.
Article
CAS
PubMed
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.
Article
CAS
PubMed
Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B. 1995;57(1):289–300.
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar
Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, et al. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;45:122–9.
Article
CAS
Google Scholar
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480–4.
Article
CAS
PubMed
Google Scholar
Opitz N, Paschold A, Marcon C, Malik WA, Lanz C, Piepho HP, et al. Transcriptomic complexity in young maize primary roots in response to low water potentials. BMC Genomics. 2014;15:741.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zheng J, Zhao J, Tao Y, Wang J, Liu Y, Fu J, et al. Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Mol Biol. 2004;55(6):807–23.
Article
CAS
PubMed
Google Scholar
Staiger D, Brown JW. Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell. 2013;25(10):3640–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reddy AS, Marquez Y, Kalyna M, Barta A. Complexity of the alternative splicing landscape in plants. Plant Cell. 2013;25(10):3657–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003;72:291–336.
Article
CAS
PubMed
Google Scholar
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, et al. Function of alternative splicing. Gene. 2013;514(1):1–30.
Article
CAS
PubMed
Google Scholar
Liu Z, Qin J, Tian X, Xu S, Wang Y, Li H, et al. Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat (Triticum aestivum L.). Plant Biotechnol J. 2018;16(3):714–26.
Article
CAS
PubMed
Google Scholar
Keller M, Hu Y, Mesihovic A, Fragkostefanakis S, Schleiff E, Simm S. Alternative splicing in tomato pollen in response to heat stress. DNA Res. 2017;24(2):205–17.
CAS
PubMed
Google Scholar
Jung KH, Ko HJ, Nguyen MX, Kim SR, Ronald P, An G. Genome-wide identification and analysis of early heat stress responsive genes in rice. J Plant Biol. 2012;55(6):458–68.
Article
CAS
Google Scholar
Dong YS, Guy CL. Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences. Plant Physiol. 2003;132(2):979–87.
Article
CAS
Google Scholar
Sarkar NK, Kim YK, Grover A. Coexpression network analysis associated with call of rice seedlings for encountering heat stress. Plant Mol Biol. 2014;84(1–2):125–43.
Article
CAS
PubMed
Google Scholar