Pan J, Plant JA, Voulvoulis N, Oates CJ, Ihlenfeld C. Cadmium levels in Europe: implications for human health. Environ Geochem Health. 2010;32:1–12. https://doi.org/10.1007/s10653-009-9273-2.
Article
CAS
PubMed
Google Scholar
Cassab GI. Plant Cell Wall proteins. Annu Rev Plant Physiol Plant Mol Biol. 1998;49:281–309. https://doi.org/10.1146/annurev.arplant.49.1.281.
Article
CAS
PubMed
Google Scholar
Albenne C, Canut H, Hoffmann L, Jamet E. Plant Cell Wall proteins: a large body of data, but what about runaways? Proteomes. 2014;2:224–42. https://doi.org/10.3390/proteomes2020224.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010;61:263–89. https://doi.org/10.1146/annurev-arplant-042809-112315.
Article
CAS
PubMed
Google Scholar
Yu L, Mort AJ. Partial characterization of xylogalacturonans from cell walls of ripe watermelon fruit: inhibition of endopolygalacturonase activity by xylosylation. Prog Biotechnol. 1996;14:79–88. https://doi.org/10.1016/S0921-0423(96)80248-6.
Article
CAS
Google Scholar
Huisman MMH, Fransen CTM, Kamerling JP, Vliegenthart JFG, Schols HA, Voragen AGJ. The CDTA-soluble pectic substances from soybean meal are composed of rhamnogalacturonan and xylogalacturonan but not homogalacturonan. Biopolymers. 2001;58:279–94. https://doi.org/10.1002/1097-0282(200103)58:3<279::AID-BIP1005>3.0.CO;2-1.
Article
CAS
PubMed
Google Scholar
Douchiche O, Driouich A, Morvan C. Spatial regulation of cell-wall structure in response to heavy metal stress: cadmium-induced alteration of the methyl-esterification pattern of homogalacturonans. Ann Bot. 2010;105:481–91. https://doi.org/10.1093/aob/mcp306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vollenweider P, Cosio C, Günthardt-Goerg MS, Keller C. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.). Environ. Exp. Bot. 2006;58:25–40. https://doi.org/10.1016/j.envexpbot.2005.06.012.
Article
CAS
Google Scholar
Paynel F, Schaumann A, Arkoun M, Douchiche O, Morvan C. Temporal regulation of cell-wall pectin methylesterase and peroxidase isoforms in cadmium-treated flax hypocotyl. Ann Bot. 2009;104:1363–72. https://doi.org/10.1093/aob/mcp254.
Article
CAS
PubMed
PubMed Central
Google Scholar
Douchiche O, Soret-Morvan O, Chaïbi W, Morvan C, Paynel F. Characteristics of cadmium tolerance in “Hermes” flax seedlings: contribution of cell walls. Chemosphere. 2010;81:1430–6. https://doi.org/10.1016/j.chemosphere.2010.09.011.
Article
CAS
PubMed
Google Scholar
Dronnet VM, Renard CMGC, Axelos MAV, Thibault JF. Heavy metals binding by pectins: selectivity, quantification and characterisation. Prog Biotechnol. 1996;14:535–40. https://doi.org/10.1016/S0921-0423(96)80283-8.
Article
CAS
Google Scholar
Krzesłowska M. The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant. 2011;33:35–51. https://doi.org/10.1007/s11738-010-0581-z.
Article
CAS
Google Scholar
McDougall GJ. Changes in cell wall-associated peroxidases during the lignification of flax fibres. Phytochemistry. 1992;31:3385–9. https://doi.org/10.1016/0031-9422(92)83691-Q.
Article
CAS
Google Scholar
Elobeid M, Göbel C, Feussner I, Polle A. Cadmium interferes with auxin physiology and lignification in poplar. J Exp Bot. 2012;63:1413–21. https://doi.org/10.1093/jxb/err384.
Article
CAS
PubMed
Google Scholar
Chaoui A, El Ferjani E. Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. C. R. Biol. 2005;328:23–31. https://doi.org/10.1016/j.crvi.2004.10.001.
Article
CAS
Google Scholar
Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Río L a, Sandalio LM. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant. Cell Environ. 2006;29:1532–44. https://doi.org/10.1111/j.1365-3040.2006.01531.x.
Article
CAS
PubMed
Google Scholar
Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot. 2001;52:2115–26. https://doi.org/10.1093/jexbot/52.364.2115.
Article
CAS
PubMed
Google Scholar
Passardi F, Penel C, Dunand C. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci. 2004;9:534–40. https://doi.org/10.1016/j.tplants.2004.09.002.
Article
CAS
PubMed
Google Scholar
Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. Lignin biosynthesis and structure. Plant Physiol. 2010;153:895–905. https://doi.org/10.1104/pp.110.155119.
Article
CAS
PubMed
PubMed Central
Google Scholar
R. Vanholme, I. Cesarino, K. Rataj, Y. Xiao, L. Sundin, G. Goeminne, H. Kim, J. Cross, K. Morreel, P. Araujo, L. Welsh, J. Haustraete, C. McClellan, B. Vanholme, J. Ralph, G.G. Simpson, C. Halpin, W. Boerjan, Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in A
rabidopsis. Science. 2013;341:1103–06. https://doi.org/10.1126/science.1241602.
Article
CAS
Google Scholar
Hyodo H, Yang SF. Ethylene-enhanced Synthesis of Phenylalanine Ammonia-Lyase in Pea Seedlings. Plant Physiol. 47(1971):765–70. https://doi.org/10.1104/PP.47.6.765.
Article
CAS
Google Scholar
Keunen E, Schellingen K, Vangronsveld J, Cuypers A. Ethylene and metal stress: small molecule, big impact. Front Plant Sci. 2016;7:23. https://doi.org/10.3389/fpls.2016.00023.
Article
PubMed
PubMed Central
Google Scholar
Schellingen K, Van Der Straeten D, Vandenbussche F, Prinsen E, Remans T, Vangronsveld J, Cuypers A. Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression. BMC Plant Biol. 2014;14:214. https://doi.org/10.1186/s12870-014-0214-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Politycka B. Ethylene-dependent activity of phenylalanine ammonia-lyase and lignin formation in cucumber roots exposed to phenolic allelochemicals. Acta Soc Bot Pol. 1999;68:123–7.
Article
CAS
Google Scholar
Printz B, Guerriero G, Sergeant K, Audinot J-N, Guignard C, Renaut J, Lutts S, Hausman J-F. Combining -omics to unravel the impact of copper nutrition on alfalfa ( Medicago sativa ) stem metabolism. Plant Cell Physiol. 2016;57:407–22. https://doi.org/10.1093/pcp/pcw001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verdonk JC, Hatfield RD, Sullivan ML. Proteomic analysis of cell walls of two developmental stages of alfalfa stems. Front Plant Sci. 2012;3:art. 279. https://doi.org/10.3389/fpls.2012.00279.
Gutsch A, Keunen E, Guerriero G, Renaut J, Cuypers A, Hausman J-F, Sergeant K. Long-term cadmium exposure influences the abundance of proteins that impact the cell wall structure in Medicago sativa stems. Plant Biol J. 2018;20:1023–35. https://doi.org/10.1111/plb.12865.
Article
CAS
Google Scholar
Ha CM, Escamilla-Trevino L, Yarce JCS, Kim H, Ralph J, Chen F, Dixon RA. An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula. Plant J. 2016;86:363–75. https://doi.org/10.1111/tpj.13177.
Article
CAS
PubMed
Google Scholar
Duruflé H, Clemente HS, Balliau T, Zivy M, Dunand C, Jamet E. Cell wall proteome analysis of Arabidopsis thaliana mature stems. Proteomics. 2017;17:1–5. https://doi.org/10.1002/pmic.201600449.
Article
CAS
Google Scholar
Sterling JD, Atmodjo MA, Inwood SE, Kumar Kolli VS, Quigley HF, Hahn MG, Mohnen D. Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proc Natl Acad Sci. 2006;103:5236–41. https://doi.org/10.1073/pnas.0600120103.
Article
CAS
PubMed
Google Scholar
Guerriero G, Legay S, Hausman JF. Alfalfa cellulose synthase gene expression under abiotic stress: a hitchhiker’s guide to RT-qPCR normalization. PLoS One. 2014;9:e103808. https://doi.org/10.1371/journal.pone.0103808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang SF, Hoffman NE. Ethylene Biosynthesis and its Regulation in Higher Plants. Annu. Rev. Plant Physiol. 1984;35:155–89. https://doi.org/10.1146/annurev.pp.35.060184.001103.
Article
CAS
Google Scholar
Gall H, Philippe F, Domon J-M, Gillet F, Pelloux J, Rayon C. Cell Wall metabolism in response to abiotic stress. Plants. 2015;4:112–66. https://doi.org/10.3390/plants4010112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tenhaken R. Cell wall remodeling under abiotic stress. Front Plant Sci. 2015;5:art. 771. https://doi.org/10.3389/fpls.2014.00771.
Albrecht KA, Wedin WF, Buxton DR. Cell-Wall composition and digestibility of alfalfa stems and leaves. Crop Sci. 1987;27:735–41. https://doi.org/10.2135/cropsci1987.0011183X002700040027x.
Article
CAS
Google Scholar
Hatfield RD. Carbohydrate composition of alfalfa cell walls isolated from stem sections differing in maturity. J Agric Food Chem. 1992;40:424–30. https://doi.org/10.1021/jf00015a012.
Article
CAS
Google Scholar
Zandleven J, Sørensen SO, Harholt J, Beldman G, Schols HA, Scheller HV, Voragen AJ. Xylogalacturonan exists in cell walls from various tissues of Arabidopsis thaliana. Phytochemistry. 2007;68:1219–26. https://doi.org/10.1016/j.phytochem.2007.01.016.
Article
CAS
PubMed
Google Scholar
Shiga TM, Lajolo FM. Cell wall polysaccharides of common beans (Phaseolus vulgaris L.) - Composition and structure. Carbohydr. Polym. 2006;63:1–12. https://doi.org/10.1016/j.carbpol.2005.06.025.
Article
CAS
Google Scholar
Willats WGT, McCartney L, Steele-King CG, Marcus SE, Mort A, Huisman M, Van Alebeek GJ, Schols HA, Voragen AGJ, Le Goff A, Bonnin E, Thibault JF, Knox JP. A xylogalacturonan epitope is specifically associated with plant cell detachment. Planta. 2004;218:673–81. https://doi.org/10.1007/s00425-003-1147-8.
Article
CAS
PubMed
Google Scholar
Wolf S, Mouille G, Pelloux J. Homogalacturonan methyl-esterification and plant development. Mol Plant. 2009;2:851–60. https://doi.org/10.1093/mp/ssp066.
Article
CAS
PubMed
Google Scholar
Willats WGT, Mccartney L, Mackie W, Knox JP. Pectin: cell biology and prospects for functional analysis. Plant Mol Biol. 2001;47:9–27. https://doi.org/10.1023/A:1010662911148.
Article
CAS
PubMed
Google Scholar
Renard CMGC, Baron A, Guyot S, Drilleau JF. Interactions between apple cell walls and native palle polyphenols/quantification and some consequences. Int J Biol Macromol. 2001;29:115–25. https://doi.org/10.1016/S0141-8130(01)00155-6.
Article
CAS
Google Scholar
Levesque-Tremblay G, Pelloux J, Braybrook SA, Müller K. Tuning of pectin methylesterification: consequences for cell wall biomechanics and development. Planta. 2015;242:791–811. https://doi.org/10.1007/s00425-015-2358-5.
Article
CAS
PubMed
Google Scholar
Brunner I, Sperisen C. Aluminum exclusion and aluminum tolerance in woody plants. Front Plant Sci. 2013;4:1–12. https://doi.org/10.3389/fpls.2013.00172.
Article
Google Scholar
Colzi I, Arnetoli M, Gallo A, Doumett S, Del Bubba M, Pignattelli S, Gabbrielli R, Gonnelli C. Copper tolerance strategies involving the root cell wall pectins in Silene paradoxa L. Environ Exp Bot. 2012;78:91–8. https://doi.org/10.1016/j.envexpbot.2011.12.028.
Article
CAS
Google Scholar
Popper ZA, Fry SC. Widespread occurrence of a covalent linkage between xyloglucan and acidic polysaccharides in suspension-cultured angiosperm cells. Ann Bot. 2005;96:91–9. https://doi.org/10.1093/aob/mci153.
Article
CAS
PubMed
PubMed Central
Google Scholar
Popper ZA, Fry SC. Primary cell wall composition of bryophytes and charophytes. Ann Bot. 2003;91:1–12. https://doi.org/10.1093/aob/mcg013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Popper ZA, Fry SC. Xyloglucan-pectin linkages are formed intra-protoplasmically, contribute to wall-assembly, and remain stable in the cell wall. Planta. 2008;227:781–94. https://doi.org/10.1007/s00425-007-0656-2.
Article
CAS
PubMed
Google Scholar
Minic Z. Physiological roles of plant glycoside hydrolases. Planta. 2008;227:723–40. https://doi.org/10.1007/s00425-007-0668-y.
Article
CAS
PubMed
Google Scholar
Gilbert HJ. The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol. 2010;153:444–55. https://doi.org/10.1104/pp.110.156646.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ecker JR, Davis RW. Plant defense genes are regulated by ethylene. Proc Natl Acad Sci U S A. 1987;84:5202–6. https://doi.org/10.1073/pnas.84.15.5202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin Z, Zhong S, Grierson D. Recent advances in ethylene research. J Exp Bot. 2009;60:3311–36. https://doi.org/10.1093/jxb/erp204.
Article
CAS
PubMed
Google Scholar
Groppa MD, Benavides MP, Tomaro ML. Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress. Plant Sci. 2003;164:293–9. https://doi.org/10.1016/S0168-9452(02)00412-0.
Article
CAS
Google Scholar
Van de Poel B, Van Der Straeten D. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! Front Plant Sci. 2014;5:1–11. https://doi.org/10.3389/fpls.2014.00640.
Article
Google Scholar
Martin MN, Saftner RA. Purification and Characterization of 1-Aminocyclopropane-1-Carboxylic Acid N-Malonyltransferase from Tomato Fruit. Plant Physiol. 1995;108:1241–9. https://doi.org/10.1104/pp.108.3.1241.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van de Poel B, Bulens I, Hertog ML, Nicolai BM, Geeraerd AH. A transcriptomics-based kinetic model for ethylene biosynthesis in tomato (Solanum lycopersicum) fruit: development, validation and exploration of novel regulatory mechanisms. New Phytol. 2014;202:952–63. https://doi.org/10.1111/nph.12685.
Article
CAS
PubMed
Google Scholar
Cass CL, Peraldi A, Dowd PF, Mottiar Y, Santoro N, Karlen SD, Bukhman YV, Foster CE, Thrower N, Bruno LC, Moskvin OV, Johnson ET, Willhoit ME, Phutane M, Ralph J, Mansfield SD, Nicholson P, Sedbrook JC. Effects of PHENYLALANINE AMMONIA LYASE (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium. J Exp Bot. 2015;66:4317–35. https://doi.org/10.1093/jxb/erv269.
Article
CAS
PubMed
PubMed Central
Google Scholar
A. Finger-Teixeira, M. de L. Lucio Ferrarese, A. Ricardo Soares, D. da Silva, O. Ferrarese-Filho Osvaldo, Cadmium-induced lignification restricts soybean root growth. Ecotoxicol Environ Saf. 2010;73:1959–64. https://doi.org/10.1016/j.ecoenv.2010.08.021.
Article
CAS
Google Scholar
Rahoui S, Martinez Y, Sakouhi L, Ben C, Rickauer M, El Ferjani E, Gentzbittel L, Chaoui A. Cadmium-induced changes in antioxidative systems and differentiation in roots of contrasted Medicago truncatula lines. Protoplasma. 2017;254:473–89. https://doi.org/10.1007/s00709-016-0968-9.
Article
CAS
PubMed
Google Scholar
Moura JC, Bonine CA, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol. 2010;52:360–76. https://doi.org/10.1111/j.1744-7909.2010.00892.x.
Article
CAS
Google Scholar
Kováčik J, Klejdus B. Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Rep. 2008;27:605–15. https://doi.org/10.1007/s00299-007-0490-9.
Article
CAS
PubMed
Google Scholar
Radotic K, Ducic T, Mutavdzic D. Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium. Environ Exp Bot. 2000;44:105–13. https://doi.org/10.1016/S0098-8472(00)00059-9.
Article
CAS
PubMed
Google Scholar
Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, Van Sanden S, Van Belleghem F, Guisez Y, Colpaert J, Vangronsveld J. The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol. 2011;168:309–16. https://doi.org/10.1016/j.jplph.2010.07.010.
Article
CAS
PubMed
Google Scholar
Sečenji M, Lendvai Á, Miskolczi P, Kocsy G, Gallé Á, Szucs A, Hoffmann B, Sárvári É, Schweizer P, Stein N, Dudits D, Györgyey J. Differences in root functions during long-term drought adaptation: comparison of active gene sets of two wheat genotypes. Plant Biol. 2010;12:871–82. https://doi.org/10.1111/j.1438-8677.2009.00295.x.
Article
CAS
PubMed
Google Scholar
Da Cunha A. The estimation of l-phenylalanine ammonia-lyase shows phenylpropanoid biosynthesis to be regulated by l-phenylalanine supply and availability. Phytochemistry. 1987;26:2723–7. https://doi.org/10.1016/S0031-9422(00)83579-7.
Article
Google Scholar
Wang W, Scali M, Vignani R, Spadafora A, Sensi E, Mazzuca S, Cresti M. Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis. 2003;24:2369–75. https://doi.org/10.1002/elps.200305500.
Article
CAS
PubMed
Google Scholar
Printz B, Dos Santos Morais R, Wienkoop S, Sergeant K, Lutts S, Hausman JF, Renaut J. An improved protocol to study the plant cell wall proteome. Front Plant Sci. 2015;6:art. 237. https://doi.org/10.3389/fpls.2015.00237.
Abdallah C, Sergeant K, Guillier C, Dumas-Gaudot E, Leclercq CC, Renaut J. Optimization of iTRAQ labelling coupled to OFFGEL fractionation as a proteomic workflow to the analysis of microsomal proteins of Medicago truncatula roots. Proteome Sci. 2012;10:37. https://doi.org/10.1186/1477-5956-10-37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Behr M, Sergeant K, Leclercq CC, Planchon S, Guignard C, Lenouvel A, Renaut J, Hausman JF, Lutts S, Guerriero G. Insights into the molecular regulation of monolignol-derived product biosynthesis in the growing hemp hypocotyl. BMC Plant Biol. 2018;18:1. https://doi.org/10.1186/s12870-017-1213-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Rourke JA, Fu F, Bucciarelli B, Yang SS, Samac DA, Lamb JAFS, Monteros MJ, Graham MA, Gronwald JW, Krom N, Li J, Dai X, Zhao PX, Vance CP. The Medicago sativa gene index 1.2: A web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies. BMC Genomics. 2015;16:1–17. https://doi.org/10.1186/s12864-015-1718-7.
Article
CAS
Google Scholar
Emanuelsson O, Nielsen H. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000;300:1005–16. https://doi.org/10.1006/jmbi.2000.3903.
Article
CAS
PubMed
Google Scholar
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22. https://doi.org/10.1373/clinchem.2008.112797.
Article
CAS
PubMed
Google Scholar
Remans T, Keunen E, Bex GJ, Smeets K, Vangronsveld J, Cuypers A. Reliable gene expression analysis by reverse transcription-quantitative PCR: reporting and minimizing the uncertainty in data accuracy. Plant Cell. 2014;26:3829–37. https://doi.org/10.1105/tpc.114.130641.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patters. Proc Natl Acad Sci. 1999;95:14863–8.
Article
Google Scholar
Saldanha AJ. Java Treeview - extensible visualization of microarray data. Bioinformatics. 2004;20:3246–8. https://doi.org/10.1093/bioinformatics/bth349.
Article
CAS
PubMed
Google Scholar
Zhu XF, Lei GJ, Jiang T, Liu Y, Li GX, Zheng SJ. Cell wall polysaccharides are involved in P-deficiency-induced cd exclusion in Arabidopsis thaliana. Planta. 2012;236:989–97. https://doi.org/10.1007/s00425-012-1652-8.
Article
CAS
PubMed
Google Scholar
Klavons JA, Bennett RD. Determination of methanol using alcohol oxidase and its application to methyl-ester content of Pectins. J Agric Food Chem. 1986;34:597–9.
Article
CAS
Google Scholar
Billa E, Tollier MT, Monties B. Characterisation of the monomeric composition of in situ wheat straw lignins by alkaline nitrobenzene oxidation: effect of temperature and reaction time. J Sci Food Agric. 1996;72:250–6.
Article
CAS
Google Scholar
Smets R, Claes V, Van Onckelen HA, Prinsen E. Extraction and quantitative analysis of 1-aminocyclopropane-1-carboxylic acid in plant tissue by gas chromatography coupled to mass spectrometry. J Chromatogr A. 2003;993:79–87. https://doi.org/10.1016/S0021-9673(02)01817-4.
Article
CAS
PubMed
Google Scholar
Perez-Riverol Y, Xu QW, Wang R, Uszkoreit J, Griss J, Sanchez A, Reisinger F, Csordas A, Ternent T, Del-Toro N, Dianes JA, Eisenacher M, Hermjakob H, Vizcaíno JA. PRIDE Inspector Toolsuite: Moving Toward a Universal Visualization Tool for Proteomics Data Standard Formats and Quality Assessment of ProteomeXchange Datasets. Mol Cell Proteomics. 2016;15:305–17. https://doi.org/10.1074/mcp.O115.050229.
Article
Google Scholar