Wang X, Zhang W, Miao Y, Gao L. Root-zone warming differently benefits mature and newly unfolded leaves of Cucumis sativus L. seedlings under sub-optimal temperature stress. PLoS One. 2016;11(5):e0155298.
PubMed
PubMed Central
Google Scholar
Bai L, Deng H, Zhang X, Yu X, Li Y. Gibberellin is involved in inhibition of cucumber growth and nitrogen uptake at suboptimal root-zone temperatures. PLoS One. 2016;11(5):e0156188.
PubMed
PubMed Central
Google Scholar
Li L, Lu X, Ma H, Lyu D. Jasmonic acid regulates the ascorbate–glutathione cycle in Malus baccata Borkh. Roots under low root-zone temperature. Acta Physiolo Plant. 2017;39(8):174.
Google Scholar
Hao HP, Jiang CD, Zhang SR, Tang YD, Shi L. Enhanced thermal-tolerance of photosystem II by elevating root zone temperature in Prunus mira Koehne seedlings. Plant Soil. 2012;353(1):367–78.
CAS
Google Scholar
Li L, Lu X, Ma H, Lyu D. Comparative proteomic analysis reveals the roots response to low root-zone temperature in Malus baccata. J Plant Res. 2018;131:865.
CAS
PubMed
Google Scholar
He Y, Yang J, Zhu B. Zhu Z-j. low root zone temperature exacerbates the ion imbalance and photosynthesis inhibition and induces antioxidant responses in tomato plants under salinity. J Integr Agr. 2014;13(1):89–99.
CAS
Google Scholar
Ding X, Jiang Y, He L, Zhou Q, Yu J, Hui D, Huang D. Exogenous glutathione improves high root-zone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings. Sci Rep. 2016;6:35424.
CAS
PubMed
PubMed Central
Google Scholar
Yusuf M, Fariduddin Q, Ahmad I, Ahmad A. Brassinosteroid-mediated evaluation of antioxidant system and nitrogen metabolism in two contrasting cultivars of Vigna radiata under different levels of nickel. Physiol Mol Biol Plants. 2014;20(4):449–60.
CAS
PubMed
PubMed Central
Google Scholar
Sakamoto M, Suzuki T. Effect of root-zone temperature on growth and quality of hydroponically grown red leaf lettuce (Lactuca sativa L. cv. Red wave). Am J Plant Sci. 2015;6(14):2350–60.
CAS
Google Scholar
Gruszka D, Janeczko A, Dziurka M, Pociecha E, Oklestkova J, Szarejko I. Barley Brassinosteroid mutants provide an insight into Phytohormonal homeostasis in plant reaction to drought stress. Front Plant Sci. 2016;7:1824.
PubMed
PubMed Central
Google Scholar
Li Y, Li J, Yan Y, Liu W, Zhang W, Gao L, Tian Y. Knock-down of CsNRT2.1, a cucumber nitrate transporter, reduces nitrate uptake, root length, and lateral root number at low external nitrate concentration. Front Plant Sci. 2018;9:722.
PubMed
PubMed Central
Google Scholar
Yi-Fang C, Yi W, Wei-Hua W. Membrane transporters for nitrogen, phosphate and potassium uptake in plants. J Integr Plant Biol. 2008;50(7):835–48.
Google Scholar
Glass ADM, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unkles SE, et al. The regulation of nitrate and ammonium transport systems in plants. J Exp Bot. 2002;53(370):855–64.
CAS
PubMed
Google Scholar
Chen C-Z, Lv X-F, Li J-Y, Yi H-Y, Gong J-M. Arabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance. Plant Physiol. 2012;159(4):1582–90.
CAS
PubMed
PubMed Central
Google Scholar
Hsu P-K, Tsay Y-F. Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth. Plant Physiol. 2013;163(2):844–56.
CAS
PubMed
PubMed Central
Google Scholar
Fan X, Feng H, Tan Y, Xu Y, Miao Q, Xu G. A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. J Integr Plant Biol. 2016;58(6):590–9.
CAS
PubMed
Google Scholar
De Jong F, Thodey K, Lejay LV, Bevan MW. Glucose elevates NITRATE TRANSPORTER 2.1 protein levels and nitrate transport activity independently of its HEXOKINASE1-mediated stimulation of NITRATE TRANSPORTER2.1 expression. Plant Physiol. 2014;164(1):308–20.
PubMed
Google Scholar
Lu J, Zhang L, Lewis RS, Bovet L, Goepfert S, Jack AM, Crutchfield JD, Ji H, Dewey RE. Expression of a constitutively active nitrate reductase variant in tobacco reduces tobacco-specific nitrosamine accumulation in cured leaves and cigarette smoke. Plant Biotech J. 2016;14(7):1500–10.
CAS
Google Scholar
Huang L, Li M, Shao Y, Sun T, Li C, Ma F. Ammonium uptake increases in response to PEG-induced drought stress in Malus hupehensis Rehd. Environ Exp Bot. 2018;151:32–42 https://doi.org/10.1016/j.envexpbot.2018.04.007.
CAS
Google Scholar
Orsel M, Chopin F, Leleu O, Smith SJ, Krapp A, Daniel-Vedele F, Miller AJ. Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction. Plant Physiol. 2006;142(3):1304–17.
CAS
PubMed
PubMed Central
Google Scholar
Møller ALB, Pedas P, Andersen B, Svensson B, Schjoerring JK, Finnie C. Responses of barley root and shoot proteomes to long-term nitrogen deficiency, short-term nitrogen starvation and ammonium. Plant Cell Environ. 2011;34(12):2024–37.
PubMed
Google Scholar
Anwar A, Liu Y, Dong R, Bai L, Yu X, Li Y. The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biol Res. 2018;51(1):46.
PubMed
PubMed Central
Google Scholar
Zhao BT, Zhu XF, Jung JH, Xuan YH. Effect of brassinosteroids on ammonium uptake via regulation of ammonium transporter and N-metabolism genes in Arabidopsis. Biol Plant. 2016;60(3):563–71.
CAS
Google Scholar
Sharma P, Kumar A, Bhardwaj R. Plant steroidal hormone epibrassinolide regulate–heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ Exp Bot. 2016;122:1–9.
Google Scholar
Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. Benefits of brassinosteroid crosstalk. Trends Plant Sci. 2012;17(10):594–05.
CAS
PubMed
Google Scholar
Wu L, Zhang Z, Zhang H, Wang XC, Huang R. Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol. 2008;148(4):1953–63.
CAS
PubMed
PubMed Central
Google Scholar
Sun S, An M, Han L, Yin S. Foliar application of 24-Epibrassinolide improved salt stress tolerance of perennial ryegrass. Horti sci. 2015;50(10):1518–23.
CAS
Google Scholar
Shu S, Tang Y, Yuan Y, Sun J, Zhong M, Guo S. The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant Physiol Bioch. 2016;107:344.
CAS
Google Scholar
Li J, Yang P, Kang J, Gan Y, Yu J, Calderon-Urrea A, Lyu J, Zhang G, Feng Z, Xie J. Transcriptome analysis of pepper (Capsicum annuum) revealed a role of 24-Epibrassinolide in response to chilling. Front Plant Sci. 2016;7:1281.
PubMed
PubMed Central
Google Scholar
Wei LJ, Deng XG, Zhu T, Zheng T, Li PX, Wu JQ, Zhang DW, Lin HH. Ethylene is involved in Brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Front Plant Sci. 2015;6:982.
PubMed
PubMed Central
Google Scholar
Xia X-J, Huang L-F, Zhou Y-H, Mao W-H, Shi K, Wu J-X, Asami T, Chen Z, Yu J-Q. Brassinosteroids promote photosynthesis and growth by enhancing activation of rubisco and expression of photosynthetic genes in Cucumis sativus L. Planta. 2009;230(6):1185.
CAS
PubMed
Google Scholar
Bajguz A. Brassinosteroid enhanced the level of abscisic acid in Chlorella vulgaris subjected to short-term heat stress. J Plant Physiol. 2009;166(8):882–6.
CAS
PubMed
Google Scholar
Saini S, Sharma I, Pati PK. Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Front Plant Sci. 2015;6:950.
PubMed
PubMed Central
Google Scholar
Xia XJ, Wang YJ, Zhou YH, Yuan T, Mao WH, Kai S, Asami T, Chen ZX, Yu JQ. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol. 2009;150(2):801–14.
CAS
PubMed
PubMed Central
Google Scholar
Wu W, Zhang Q, Ervin EH, Yang Z, Zhang X. Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-Epibrassinolide. Front Plant Sci. 2017;8:1017.
PubMed
PubMed Central
Google Scholar
Fariduddin Q, Khalil RR, Mir BA, Yusuf M, Ahmad A. 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ Monit Assess. 2013;185(9):7845–56.
CAS
PubMed
Google Scholar
Fariduddin Q, Yusuf M, Chalkoo S, Hayat S, Ahmad A. 28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica. 2011;49(1):55–64.
CAS
Google Scholar
Talaat NB, Shawky BT. 24-Epibrassinolide ameliorates the saline stress and improves the productivity of wheat (Triticum aestivum L.). Environ Exp Bot. 2012;82:80–8.
CAS
Google Scholar
Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22alpha-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell. 1998;10(2):231–43.
CAS
PubMed
PubMed Central
Google Scholar
Clouse SD, Sasse JM. BRASSINOSTEROIDS: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol. 1998;49(1):427–51.
CAS
PubMed
Google Scholar
Choe S, Schmitz RJ, Fujioka S, Takatsuto S, Lee M-O, Yoshida S, Feldmann KA, Tax FE. Arabidopsis Brassinosteroid-Insensitive dwarf12 mutants are Semidominant and defective in a glycogen synthase kinase 3β-like kinase. Plant Physiol. 2002;130(3):1506–15.
CAS
PubMed
PubMed Central
Google Scholar
Yan Q, Duan Z, Mao J, Li X, Dong F. Effects of root-zone temperature and N, P, and K supplies on nutrient uptake of cucumber (Cucumis sativus L.) seedlings in hydroponics. Soil Sci Plant Nutr. 2012;58(6):707–17.
CAS
Google Scholar
Nada K, He LX, Tachibana S. Impaired photosynthesis in cucumber (Cucumis sativus L.) by high root-zone temperature involves ABA-induced stomatal closure and reduction in Ribulose-1,5-bisphosphate carboxylase/oxygenase activity. Journal of the Japanese Society for Horticultural Science. 2008;72(6):504–10.
Google Scholar
Ogweno JO, Song XS, Shi K, Hu WH, Mao WH, Zhou YH, Yu JQ, Nogués S. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul. 2008;27(1):49–57.
CAS
Google Scholar
Hayat S, Hasan SA, Yusuf M, Hayat Q, Ahmad A. Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environ Exp Bot. 2010;69(2):105–12.
CAS
Google Scholar
Li J, Yang P, Kang J, Gan Y, Yu J, Calderón-Urrea A, Lyu J, Zhang G, Feng Z, Xie J. Transcriptome analysis of pepper (Capsicum annuum) revealed a role of 24-Epibrassinolide in response to chilling. Front Plant Sci. 2016;7:1281.
PubMed
PubMed Central
Google Scholar
Dhaubhadel S, Browning KS, Gallie DR, Krishna P. Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J. 2002;29(6):681–91.
CAS
PubMed
Google Scholar
Anwar A, Bai L, Miao L, Liu Y, Li S, Yu X, Li Y. 24-Epibrassinolide ameliorates endogenous hormone levels to enhance low-temperature stress tolerance in cucumber seedlings. Int J Mol Sci. 2018;19(9):2497.
PubMed Central
Google Scholar
He J, Qin L, Lee SK. Root-zone CO2 and root-zone temperature effects on photosynthesis and nitrogen metabolism of aeroponically grown lettuce (Lactuca sativa L.) in the tropics. Photosynthetica. 2013;51(3):330–40.
CAS
Google Scholar
Adebooye OC, Schmitz-Eiberger M, Lankes C, Noga GJ. Inhibitory effects of sub-optimal root zone temperature on leaf bioactive components, photosystem II (PS II) and minerals uptake in Trichosanthes cucumerina L. Cucurbitaceae. Acta Physiol Plant. 2009;32(1):67.
Google Scholar
Tanveer M, Shahzad B, Sharma A, Khan EA. 24-Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants. Plant Physiol Bioch. 2019;135:295–303.
CAS
Google Scholar
Tanveer M, Shahzad B, Sharma A, Biju S, Bhardwaj R. 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants. A review. Plant Physiol Bioch. 2018;130:69–79.
CAS
Google Scholar
Comas L, Becker S, Cruz VMV, Byrne PF, Dierig DA. Root traits contributing to plant productivity under drought. Front Plant Sci. 2013;4:442.
PubMed
PubMed Central
Google Scholar
Q-y Y, Z-q D, J-d M, Li X, Dong F. Low root zone temperature limits nutrient effects on cucumber seedling growth and induces adversity physiological response. J Integr Agr. 2013;12(8):1450–60.
Google Scholar
Fang S, Tao Y, Zhang Y, Kong F, Wang Y. Effects of metalaxyl enantiomers stress on root activity and leaf antioxidant enzyme activities in tobacco seedlings. Chirality. 2018;30(4):469–74.
CAS
PubMed
Google Scholar
Gonzalez-Fuentes JA, Shackel K, Lieth JH, Albornoz F, Benavides-Mendoza A, Evans RY. Diurnal root zone temperature variations affect strawberry water relations, growth, and fruit quality. Sci Hortic. 2016;203:169–77.
Google Scholar
Xiaorong F, Huimin F, Yawen T, Yanling X, Qisong M, Guohua X. A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. J Integr Plant Biol. 2016;58(6):590–9.
Google Scholar
Wu M, Liu M, Liu J. Li W-t, Jiang C-y, Li Z-p. optimize nitrogen fertilization location in root-growing zone to increase grain yield and nitrogen use efficiency of transplanted rice in subtropical China. J Integr Agr. 2017;16(9):2073–81.
Google Scholar
O'Brien J, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G, Gutiérrez R. Nitrate transport, sensing, and responses in plants. Mol Plant. 2016;9(6):837–56.
CAS
PubMed
Google Scholar
Santiago JP, Tegeder M. Implications of nitrogen phloem loading for carbon metabolism and transport during Arabidopsis development. J Integr Plant Biol. 2017;59(6):409–21.
CAS
PubMed
Google Scholar
He J, Austin PT, Lee SK. Effects of elevated root zone CO2 and air temperature on photosynthetic gas exchange, nitrate uptake, and total reduced nitrogen content in aeroponically grown lettuce plants. J Exp Bot. 2010;61(14):3959.
CAS
PubMed
PubMed Central
Google Scholar
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch. 2010;48(12):909–30.
CAS
Google Scholar
Chaiwanon J, Garcia Veder J, Cartwright H, Sun Y, Wang Z-Y. Immunophilin-like FKBP42/TWISTED DWARF1 interacts with the receptor kinase BRI1 to regulate Brassinosteroid signaling in Arabidopsis. Mol Plant. 2016;9(4):593–600.
CAS
PubMed
PubMed Central
Google Scholar
Belkhadir Y, Wang X, Chory J. Brassinosteroid signaling pathway. Sci STKE. 2006.
Bartoli CG, Casalongué CA, Simontacchi M, Marquez-Garcia B, Foyer CH. Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environ Exp Bot. 2013;94:73–88.
CAS
Google Scholar
Huang L, Li M, Zhou K, Sun T, Hu L, Li C, Ma F. Uptake and metabolism of ammonium and nitrate in response to drought stress in Malus prunifolia. Plant Physiol Bioch. 2018;127:185–93.
CAS
Google Scholar
Divi UK, Krishna P. Brassinosteroids confer stress tolerance. Plant stress biology; genomics goes systems biology. Edited by Hirt H. Weinheim: Wiley-VCH; 2009.
Google Scholar
Divi UK, Krishna P. Overexpression of the Brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds overcomes abscisic acid-induced inhibition of germination and increases cold tolerance in transgenic seedlings. J Plant Growth Regul. 2010;29(4):385–93.
CAS
Google Scholar
Dalio RJD, Pinheiro HP, Sodek L, Haddad CRB. 24-epibrassinolide restores nitrogen metabolism of pigeon pea under saline stress. Bot Stud. 2013;54(1):9.
PubMed
PubMed Central
Google Scholar
Druege U, Franken P, Hajirezaei MR. Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Front Plant Sci. 2016;7(381).
Migocka M, Warzybok A, Kłobus G. The genomic organization and transcriptional pattern of genes encoding nitrate transporters 1 (NRT1) in cucumber. Plant Soil. 2013;364(1):245–60.
CAS
Google Scholar
Gupta P, Srivastava S, Seth CS. 24-Epibrassinolide and sodium nitroprusside alleviate the salinity stress in Brassica juncea L. cv. Varuna through cross talk among proline, nitrogen metabolism and abscisic acid. Plant Soil. 2017;411(1):483–98.
CAS
Google Scholar
Meng S, Su L, Li Y, Wang Y, Zhang C, Zhao Z. Nitrate and ammonium contribute to the distinct nitrogen metabolism of Populus simonii during moderate salt stress. PLoS One. 2016;11(3):e0150354.
PubMed
PubMed Central
Google Scholar
Bai H, Euring D, Volmer K, Janz D, Polle A. The nitrate transporter (NRT) gene family in poplar. PLoS One. 2013;8(8):e72126.
CAS
PubMed
PubMed Central
Google Scholar
Anwar A, Di Q, Yan Y, He C, Li Y, Yu X. Exogenous 24-epibrassinolide alleviates the detrimental effects of suboptimal root zone temperature in cucumber seedlings. Arch Agron Soil Sci. 2019:1–14.
Bai BZ, Jin JZ, Bai S, Huang LP. Improvement of TTC method determining root activity in corn. Maize Sci. 1994;2:44–7 in Chinese with english abstract.
Google Scholar
Bai L, Liu Y, Mu Y, Anwar A, He C, Yan Y, Li Y, Yu X. Heterotrimeric G-protein γ subunit CsGG3.2 positively regulates the expression of CBF genes and chilling tolerance in cucumber. Front Plant Sci. 2018;9(488).
Yu Y, Xu T, Li X, Tang J, Ma D, Li Z, Sun J. NaCl-induced changes of ion homeostasis and nitrogen metabolism in two sweet potato (Ipomoea batatas L.) cultivars exhibit different salt tolerance at adventitious root stage. Environ Exp Bot. 2016;129:23–36.
CAS
Google Scholar
Jiahui Z, Ning Z, Congcong L, Hao Y, Meiling L, Guirui Y, Kevin W, Qiang Y, Nianpeng H. C:N:P stoichiometry in China's forests: from organs to ecosystems. Funct Ecol. 2018;32(1):50–60.
Google Scholar