Botha FC, Black KG. Sucrose phosphate synthase and sucrose synthase activity during maturation of internodal tissue in sugarcane. Aust J Plant Physiol. 2000;27:81–5.
CAS
Google Scholar
Swapna M, Srivastava M. Molecular marker applications for improving sugar content in sugarcane. New York: Springer; 2012. https://doi.org/10.1007/978-1-4614-2257-0.
Book
Google Scholar
FAO. FAOSTAT. In: Statistical databases; 2014. http://www.fao.org/faostat/en.
Google Scholar
Bottcher A, Cesarino I, Brombini dos Santos A, Vicentini R, Mayer JLS, Vanholme R, et al. Lignification in sugarcane: biochemical characterization, gene discovery, and expression analysis in two genotypes contrasting for lignin content. Plant Physiol. 2013;163:1539–57. https://doi.org/10.1104/pp.113.225250.
Article
CAS
PubMed
PubMed Central
Google Scholar
CONAB. Acompanhamento da safra Brasileira: cana-de-açúcar (follow-up of the Brazilian harvest: sugarcane). Monitoramento agrícola: cana-de-açucar (Agricultural monitoring: sugarcane). 2017. https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar/item/download/1209_3473288df6b6414380e1d3ad68a39246.
Batta SK, Singh R. Sucrose metabolism in sugar cane grown under varying climatic conditions: synthesis and storage of sucrose in relation to the activities of sucrose synthase, sucrose-phosphate synthase and invertase. Phytochemistry. 1986;25:2431–7.
Article
CAS
Google Scholar
Lingle SE, Viator RP, Johnson RM, Tew TL, Boykin DL. Recurrent selection for sucrose content has altered growth and sugar accumulation in sugarcane. F Crop Res. 2009;113:306–11.
Article
Google Scholar
Patrick JW, Botha FC, Birch RG. Metabolic engineering of sugars and simple sugar derivatives in plants. Plant Biotechnol J. 2013;11:142–56.
Article
CAS
Google Scholar
Rae AL, Grof CPL, Casu RE, Bonnett GD. Sucrose accumulation in the sugarcane stem: pathways and control points for transport and compartmentation. F Crop Res. 2005;92:159–68.
Article
Google Scholar
Rohwer JM, Botha FC. Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem J. 2001;358:437–45. https://doi.org/10.1042/0264-6021:3580437.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dodd AN, Webb AAR. In a plant’s own sweet time. Biochem Biochem Soc. 2014;36:8–11.
CAS
Google Scholar
de Montaigu A, Giakountis A, Rubin M, Tóth R, Cremer F, Sokolova V, et al. Natural diversity in daily rhythms of gene expression contributes to phenotypic variation. PNAS. 2015;112:905–10. https://doi.org/10.1073/pnas.1422242112.
Article
CAS
PubMed
Google Scholar
Hoffman DE, Jonsson P, Bylesjö M, Trygg J, Antti H, Eriksson ME, et al. Changes in diurnal patterns within the Populus transcriptome and metabolome in response to photoperiod variation. Plant Cell Environ. 2010;33:1298–313.
CAS
PubMed
Google Scholar
Mutisya J, Sun C, Jansson C. Circadian oscillation of starch branching enzyme gene expression in the sorghum endosperm. Plant Signal Behav. 2009;4:871–2.
Article
CAS
Google Scholar
Gibon Y, Bläsing OE, Palacios-Rojas N, Pankovic D, Hendriks JHM, Fisahn J, et al. Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the followin. Plant J. 2004;39:847–62.
Article
CAS
Google Scholar
Scialdone A, Mugford ST, Feike D, Skeffngton A, Borrill P, Graf A, et al. Arabidopsis plants perform arithmetic division to prevent starvation at night. Elife. 2013;2013:1–24.
Google Scholar
De Souza AP, Grandis A, Arenque-Musa BC, Buckeridge MS. Diurnal variation in gas exchange and nonstructural carbohydrates throughout sugarcane development. Funct Plant Biol. 2018;45:865–76.
Article
Google Scholar
Wu L, Birch RG. Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol J. 2007;5:109–17.
Article
CAS
Google Scholar
Zhu YJ, Komor E, Moore PH. Sucrose accumulation in the sugarcane stem is regulated by the difference between the activities of soluble acid Invertase and sucrose phosphate synthase. Plant Physiol. 1997;115:609–16. https://doi.org/10.1104/PP.115.2.609.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batta SK, Kaur K, Singh R. Synthesis and storage of sucrose in relation to activities of its metabolizing enzymes in sugarcane cultivars differing in maturity. J Plant Biochem Biotechnol. 1995;4:17–22.
Article
CAS
Google Scholar
Batta SK, Pant NC, Thind KS, Uppal SK. Sucrose accumulation and expression of enzyme activities in early and mid-late maturing sugarcane genotypes. Sugar Tech. 2008;10:319–26.
Article
CAS
Google Scholar
Cunha CP, Roberto GG, Vicentini R, Lembke CG, Souza GM, Ribeiro RV, et al. Ethylene-induced transcriptional and hormonal responses at the onset of sugarcane ripening. Sci Rep. 2017;7:43364. https://doi.org/10.1038/srep43364.
Article
PubMed
PubMed Central
Google Scholar
Ebrahim MK, Zingsheim O, El-Shourbagy MN, Moore PH, Komor E. Growth and sugar storage in sugarcane grown at temperatures below and above optimum. J Plant Physiol. 1998;153:593–602. https://doi.org/10.1016/S0176-1617(98)80209-5.
Article
CAS
Google Scholar
Inman-Bamber NG, Bonnett GD, Spillman MF, Hewitt MH, Glassop D. Sucrose accumulation in sugarcane is influenced by temperature and genotype through the carbon sourcesink balance. Crop Pasture Sci. 2010;61:111–21.
Article
Google Scholar
Mattiello L, Riaño-Pachón DM, Martins MCM, da Cruz LP, Bassi D, Marchiori PER, et al. Physiological and transcriptional analyses of developmental stages along sugarcane leaf. BMC Plant Biol. 2015;15:300. https://doi.org/10.1186/s12870-015-0694-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mccormick AJ, Cramer MD, Watt DA. Strength regulates in sugarcane. New Phytol. 2006;171:759–70.
Article
CAS
Google Scholar
Sachdeva M, Mann APS, Batta SK. Sucrose metabolism and expression of key enzyme activities in low and high sucrose storing sugarcane genotypes. Sugar Tech. 2003;5:265–71.
Article
CAS
Google Scholar
Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol. 2005;6:850–61. https://doi.org/10.1038/nrm1746.
Article
CAS
PubMed
Google Scholar
Barnes WJ, Anderson CT. Release, Recycle, rebuild: cell wall remodeling, autodegradation, and sugar salvage for new wall biosynthesis during plant development. Mol Plant. 2017;8:1–16. https://doi.org/10.1016/j.molp.2017.08.011.
Article
CAS
Google Scholar
Vorwerk S, Somerville S, Somerville C. The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci. 2004;9:203–9.
Article
CAS
Google Scholar
de Souza AP, Leite DCC, Pattathil S, Hahn MG, Buckeridge MS. Composition and structure of sugarcane Cell Wall polysaccharides: implications for second-generation bioethanol production. Bioenergy Res. 2013;6:564–79.
Article
CAS
Google Scholar
Paniagua C, Santiago-Doménech N, Kirby AR, Gunning AP, Morris VJ, Quesada MA, et al. Structural changes in cell wall pectins during strawberry fruit development. Plant Physiol Biochem. 2017;118:55–63.
Article
CAS
Google Scholar
Zhang J, Wang X, Yu O, Tang J, Gu X, Wan X, et al. Metabolic profiling of strawberry (Fragaria × ananassa Duch.) during fruit development and maturation. J Exp Bot. 2011;62:1103–18.
Article
CAS
Google Scholar
Guillon F, Moïse A, Quemener B, Bouchet B, Devaux MF, Alvarado C, et al. Remodeling of pectin and hemicelluloses in tomato pericarp during fruit growth. Plant Sci. 2017;257:48–62.
Article
CAS
Google Scholar
Chebli Y, Kaneda M, Zerzour R, Geitmann A. The Cell Wall of the Arabidopsis pollen tube--spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol. 2012;160:1940–55. https://doi.org/10.1104/pp.112.199729.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bobák M, Nečesaný V. Changes in the formation of the lignified cell wall within a twenty-four hour period. Biol Plant. 1967;9:195–201. https://doi.org/10.1007/BF02929737.
Article
Google Scholar
Hosoo Y, Yoshida M, Imai T, Okuyama T. Diurnal difference in the amount of immunogold-labeled glucomannans detected with field emission scanning electron microscopy at the innermost surface of developing secondary walls of differentiating conifer tracheids. Planta. 2002;215:1006–12.
Article
CAS
Google Scholar
Mahboubi A, Linden P, Hedenström M, Moritz T, Niittylä T. 13C tracking after 13CO2 supply revealed diurnal patterns of wood formation in Aspen. Plant Physiol. 2015;168:478–89. https://doi.org/10.1104/pp.15.00292.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solomon OL, Berger DK, Myburg AA. Diurnal and circadian patterns of gene expression in the developing xylem of Eucalyptus trees. South African J Bot. 2010;76:425–39. https://doi.org/10.1016/j.sajb.2010.02.087.
Article
CAS
Google Scholar
Gibon Y, Pyl ET, Sulpice R, Lunn JE, Höhne M, Günther M, et al. Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant Cell Environ. 2009;32:859–74.
Article
CAS
Google Scholar
Konsin M, Voipio I, Palonen P. Influence of photoperiod and duration of short-day treatment on vegetative growth and flowering of strawberry (Fragaria X ananassa Duch.). J Hortic Sci Biotechnol. 2001;76:77–82.
Article
Google Scholar
Allison JCS, Pammenter NW, Haslam RJ. Why does sugarcane (Saccharum sp. hybrid) grow slowly? South African J Bot. 2007;73:546–51.
Article
Google Scholar
Hotta CT, Nishiyama MY, Souza GM. Circadian rhythms of sense and antisense transcription in sugarcane, a highly Polyploid crop. PLoS One. 2013;8:e71847.
Article
CAS
Google Scholar
Li H, Liang Z, Ding G, Shi L, Xu F, Cai H. A Natural Light/Dark Cycle Regulation of Carbon-Nitrogen Metabolism and Gene Expression in Rice Shoots. Front Plant Sci. 2016;7 August:1318. https://doi.org/10.3389/fpls.2016.01318.
Article
Google Scholar
Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science. 2005;309:630–3. https://doi.org/10.1126/science.1115581.
Article
CAS
Google Scholar
Bläsing OE, Gibon Y, Gunther M, Hohne M, Morcuende R, Osuna D, et al. Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell Online. 2005;17:3257–81. https://doi.org/10.1105/tpc.105.035261.
Article
CAS
Google Scholar
Lemoine R, La Camera S, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, et al. Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci. 2013;4 July:272. https://doi.org/10.3389/fpls.2013.00272.
Article
CAS
Google Scholar
Papini-Terzi FS, Rocha FR, Vêncio RZN, Felix JM, Branco DS, Waclawovsky AJ, et al. Sugarcane genes associated with sucrose content. BMC Genomics. 2009;10:120.
Article
Google Scholar
Ferreira SS, Hotta CT, Poelking VG de C, Leite DCC, Buckeridge MS, Loureiro ME, et al. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane. Plant Mol Biol. 2016;91:15–35.
Article
CAS
Google Scholar
McCormick AJ, Kruger NJ. Lack of fructose 2,6-bisphosphate compromises photosynthesis and growth in Arabidopsis in fluctuating environments. Plant J. 2015;81:670–83.
Article
CAS
Google Scholar
Strand Å, Zrenner R, Trevanion S, Stitt M, Gustafsson P, Gardeström P. Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thalian. Plant J. 2000;23:759–70.
Article
CAS
Google Scholar
Figueira JDA, Carvalho PH, Sato HH. Sugarcane starch: quantitative determination and characterization. Ciência e Tecnol Aliment. 2011;31:806–15.
Article
Google Scholar
Casu RE, Grof CPL, Rae AL, McIntyre CL, Dimmock CM, Manners JM. Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. Plant Mol Biol. 2003;52:371–86.
Article
CAS
Google Scholar
Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science. 2012;335(80):207–11.
Article
CAS
Google Scholar
Rohwer JM, Uys L. Systems Biology and Metabolic Modeling. In: Moore PH, Botha FC, editors. Sugarcane: physiology, biochemistry, and functional Biology. Oxford: Jhon Wiley & Sons; 2014. p. 601–22. https://doi.org/10.1002/9781118771280.ch22.
Chapter
Google Scholar
Toole GA, Le Gall G, Colquhoun IJ, Nemeth C, Saulnier L, Lovegrove A, et al. Temporal and spatial changes in cell wall composition in developing grains of wheat cv. Hereward. Planta. 2010;232:677–89.
Article
CAS
Google Scholar
Pellny TK, Lovegrove A, Freeman J, Tosi P, Love CG, Knox JP, et al. Cell walls of developing wheat starchy endosperm: comparison of composition and RNA-Seq transcriptome. Plant Physiol. 2012;158:612–27.
Article
CAS
Google Scholar
Calderan-Rodrigues MJ, Jamet E, Bonassi MBCR, Guidetti-Gonzalez S, Begossi AC, Setem LV, et al. Cell wall proteomics of sugarcane cell suspension cultures. Proteomics. 2014;14:738–49.
Article
CAS
Google Scholar
Douché T, Clemente HS, Burlat V, Roujol D, Valot B, Zivy M, et al. Brachypodium distachyon as a model plant toward improved biofuel crops: search for secreted proteins involved in biogenesis and disassembly of cell wall polymers. Proteomics. 2013;13:2438–54.
Article
Google Scholar
Francin-Allami M, Merah K, Albenne C, Rogniaux H, Pavlovic M, Lollier V, et al. Cell wall proteomic of Brachypodium distachyon grains: a focus on cell wall remodeling proteins. Proteomics. 2015;15:2296–306.
Article
CAS
Google Scholar
Botha FC, Moore PH. Biomass and Bio-energy. In: Moore PH, Botha FC, editors. Sugarcane: physiology, biochemistry, and functional Biology. Oxford: Jhon Wiley & Sons; 2014. p. 521–40.
Google Scholar
Landell M, Scarpari M, Xavier M. Residual biomass potential of commercial and pre-commercial sugarcane cultivars. Sci Agric. 2013;70:299–304. https://doi.org/10.1590/S0103-90162013000500003.
Article
Google Scholar
Bonnett G. Developmental stages (phenology). In: Moore PH, Botha FC, editors. Sugarcane: physiology, biochemistry, and functional Biology. Oxford: John Wiley & Sons, Ltd; 2014. p. 35–53. https://doi.org/10.1002/9781118771280.
Chapter
Google Scholar
Wai CM, Zhang J, Jones TC, Nagai C, Ming R. Cell wall metabolism and hexose allocation contribute to biomass accumulation in high yielding extreme segregants of a Saccharum interspecific F2 population. BMC Genomics. 2017;18:773. https://doi.org/10.1186/s12864-017-4158-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuijper J. DeGroei van Bladschijf, Bladscheede em Stengel van het suikerriet. Arch Suikerind Ned. 1915;23:528–56.
Google Scholar
Chen L, Auh C, Chen F, Cheng X, Aljoe H, Dixon RA, et al. Lignin deposition and associated changes in anatomy, enzyme activity, gene expression, and ruminal degradability in stems of tall fescue at different developmental stages. J Agric Food Chem. 2002;50:5558–65.
Article
CAS
Google Scholar
DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350–6. https://doi.org/10.1021/ac60111a017.
Article
CAS
Google Scholar
Somogyi M. Notes on sugar determination. J Biol Chem. 1952;195:19–23.