Ray DK, Mueller ND, West PC, Foley JA. Yield trends are insufficient to double global crop production by 2050. PLoS One. 2013;8(6):66428.
Article
Google Scholar
Dai A. Increasing drought under global warming in observations and models. Nat Clim Chang. 2013;3:52–8.
Article
Google Scholar
Ray DK, Gerber JS, MacDonald GK, West PC. Climate variation explains a third of global crop yield variability. Nature Comm. 2015;6:5989.
Article
CAS
Google Scholar
Placido DF, Campbell MT, Folsom JJ, Cui X, Kruger GR, Baezinger PS, et al. Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiol. 2013;161:1806–19.
Article
CAS
Google Scholar
Dvorak J, Terlizzi P, Zhang HB, Resta P. The evolution of polyploid wheats: identification of the a genome donor species. Genome. 1993;36:21–31.
Article
CAS
Google Scholar
Kihara H. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hort. 1944;19:13–4.
Google Scholar
Dvorak J, Zhang HB. Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. PNAS. 1990;87:9640–4.
Article
CAS
Google Scholar
Valkoun JJ. Wheat pre-breeding using wild progenitors. Euphytica. 2001;119:17–23.
Article
Google Scholar
Liu W, Koo DH, Friebe B, Gill BS. A set of Triticum aestivum-Aegilops speltoides Robertsonian translocation lines. Theor Appl Genet. 2016;129:2359–68.
Article
Google Scholar
Ehdaie B, Whitkus RW, Waines JG. Root biomass, water-use efficiency, and performance of wheat-rye translocations of chromosomes 1 and 2 in spring bread wheat ‘Pavon’. Crop Sci. 2003;43:710–7.
Article
Google Scholar
Pradhan GP, Prasad PVV. Evaluation of wheat chromosome translocation lines for high temperature stress tolerance at grain filling stage. PLoS One. 2015;10(2):e0116620.
Article
Google Scholar
Dvorak J, Edge M, Ross K. On the evolution of the adaptation of Lophopyrum elongatum to growth in saline environments. PNAS. 1988;85:3805–9.
Article
CAS
Google Scholar
McDonald MP, Galwey NW, Ellneskog-Staam P, Colmer TD. Evaluation of Lophopyrum elongatum as a source of genetic diversity to increase the waterlogging tolerance of hexaploid wheat (Triticum aestivum). New Phytol. 2001;151:369–80.
Article
Google Scholar
Monneveux P, Reynolds MP, Gonzalez-Aguilar J, Singh RP, Weber WE. Effects of the 7DL.7Ag translocation from Lophopyrum elongatum on wheat yield and related morphophysiological traits under different environments. Plant Breed. 2003;122:379–84.
Article
CAS
Google Scholar
Waines JG, Ehdaie B. Domestication and crop physiology: roots of green-revolution wheat. Ann Bot. 2007;100:991–8.
Article
Google Scholar
Yediay F, Baloch F, Kilian B, Ozkan H. Testing of rye-specific markers located on 1RS chromosome and distribution of 1AL.RS and 1BL.RS translocations in Turkish wheat (Triticum aestivum L. durum Desf.) varieties and landraces. Genet Resour Crop Evol. 2010;57:119–29.
Article
CAS
Google Scholar
Yuan B, Cao X, Lv A. Gene introgression from common wheat into Aegilops L. Saudi J Biol Sci. 2017;24:813–6.
Article
CAS
Google Scholar
Friebe BR, Tuleen NA, Gill BS. Development and identification of a complete set of Triticum aestivum-Aegilops geniculata chromosome addition lines. Genome. 1999;42:374–80.
Article
Google Scholar
Sharma S, Bhat P, Ehdaie B, Close T, Lukaszewski A, Waines J. Integrated genetic map and genetic analysis of a region associated with root traits on the short arm of rye chromosome 1 in bread wheat. Theor Appl Genet. 2009;119:783–93.
Article
CAS
Google Scholar
Liang H, Yongliang Y, Hongqi Y, Lanjie X, Wei D, Hua D, et al. Inheritance and QTL mapping of related root traits in soybean at the seedling stage. Theor Appl Genet. 2014;127:2127–37.
Article
CAS
Google Scholar
Zhang H, Mittal N, Leamy LJ, Barazani O, Song BH. Back into the wild-apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl. 2017;10:5–24.
Article
Google Scholar
Lukaszewski AJ. Reconstruction of complete chromosomes 1B and 1R from the 1RS.1BL translocation of ‘Kavkaz’ origin. Genome. 1993;36:821–4.
Article
CAS
Google Scholar
Ehdaie B, Layne AP, Waines JG. Root system plasticity to drought influences grain yield in bread wheat. Euphytica. 2012;186:219–32.
Article
Google Scholar
Siddique KHM, Belford RK, Tennant D. Root: shoot ratios of old and modern, tall and semi-dwarf wheats in a Mediterranean environment. Plant Soil. 1990;121:89–98.
Article
Google Scholar
Wasson AP, Richards RA, Chatrath R, Misra SC, Prasad SV, Rebetzke GK, et al. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot. 2012;63:3485–98.
Article
CAS
Google Scholar
Comas LH, Becker SR, Curz VMV, Byrne PF, Dierig DA. Root traits contributing to plant productivity under drought. Frontiers in Plant Sci. 2013;4:442.
Article
Google Scholar
Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet. 2013;45:1097–102.
Article
CAS
Google Scholar
Osipova S, Permyakov A, Permyakova M, Pshenichnikova T, Verkhoturov V, Rudikovsky A, et al. Regions of the bread wheat D genome associated with variation in key photosynthesis traits and shoot biomass under both well-watered and water deficient conditions. J Appl Genet. 2016;57:151–63.
Article
CAS
Google Scholar
Bobo MS, Planchon C, Morris R. Chromosome 3D influences photosystem II quantum efficiency in winter wheat. Crop Sci. 1992;32:958–61.
Article
CAS
Google Scholar
Watanabe N, Ogawa A, Kitaya T, Furuta Y. Effect of substituted D genome chromosomes on photosynthesis rate of durum wheat (Triticum aestivum L.). Euphytica. 1994;72:127–31.
Article
Google Scholar
Haour-Lurton B, Planchon C. Role of D-genome chromosome in photosynthesis expression in wheats. Theor Appl Genet. 1985;69:443–6.
Article
CAS
Google Scholar
Darko E, Janda T, Majlath I, Szopko D, Dulai S, Molnar I, et al. Salt stress response of wheat-barley addition lines carrying chromosomes from the winter barley “Manas”. Euphytica. 2015;203:491–504.
Article
Google Scholar
P.V.V. Prasad, S.A. Staggenborg, Z. Ristic, Impacts of drought and/or heat stress on physiological, developmental, growth and yield processes of crop plants. In: “Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes”. (Eds L.H. Ahuja, S.A. Saseendran) (Advances in Agricultural Systems Modeling Series 1, ASA-CSSA: Madison, WI, USA) (2008) pp 301–355.
Saini HS, Aspinall D. Effect of water deficit on sporogenesis in wheat (Triticum aestivum L). Ann Bot. 1981;48:623–33.
Article
Google Scholar
Sharma S, Demason DA, Ehdaie B, Lukaszewski AJ, Waines JG. Dosage effect of the short arm of chromosome 1 of rye on root morphology and anatomy in bread wheat. J Exp Bot. 2010;61:2623–33.
Article
CAS
Google Scholar
Reynolds MP, Quilligan E, Aggarwal PK, Bansal KC, Cavalieri AJ, Chapman SC, et al. An integrated approach to maintaining cereal productivity under climate change. Global Food Security. 2016;8:9–18.
Article
Google Scholar
He XL, Wang JW, Li WX, Chen ZZ, Wu J, Zhao JX, et al. An intronless sucrose:fructan-6-fructosyltransferase (6-SFT) gene from Dasypyrum villosum enhances abiotic tolerance in tobacco. Biol Plant. 2017;61:235–45.
Article
CAS
Google Scholar
Yudina RS, Leonova IN, Salina EA, Khlestkina EK. Effect of alien genomic introgressions on the osmotic stress resistance of wheat. Russian J Genet Appl Res. 2015;5:168–73.
Article
CAS
Google Scholar
Rich SM, Watt M. Soil conditions and cereal root system architecture: review and considerations for linking Darwin and weaver. J Exp Bot. 2013;64:1193–208.
Article
CAS
Google Scholar
Manschadi AM, Christopher J, deVoil P, Hammer GL. The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol. 2006;33:823–37.
Article
CAS
Google Scholar
Chen YE, Su YQ, Zhang CM, Ma J, Mao HT, Yang ZH, Yuan M, Zhang ZW, Yuan S, Zhang HY. Comparison of photosynthetic characteristics and antioxidant systems in different wheat strains. J Plant Growth Reg. 2018;37:347–59.
Article
Google Scholar
Havaux M, Greppin H, Strasser RJ. Functioning of photosystems I and II in pea leaves exposed to heat stress in the presence or absence of light. Planta. 1991;186:88–98.
Article
CAS
Google Scholar
Tezara W, Marin O, Rengifo E, Martinez D, Herrera A. Photosynthesis and photoinhibition in two xerophytic shrubs during drought. Photosynthetica. 2005;43:37–45.
Article
CAS
Google Scholar
Pour-Aboughadareh A, Ahmadi J, Mehrabi AA, Etminan A, Moghaddam M, Siddique KHM. Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement. Acta Physiol Plant. 2017;39:106. https://doi.org/10.1007/s11738-017-2403-z.
Article
CAS
Google Scholar
Bai ZY, Li CD, Zhao JF, Wu TY, Zheng JF, Bi CR, et al. Effect and preliminary analysis of chromosomal control on the chlorophyll fluorescence parameters of wheat substitution lines between synthetic hexaploid wheat and Chinese spring under drought stress. Sci Ag Sin. 2011;44:47–57 in Chinese.
Google Scholar
Sairam RK, Shukla DS, Saxena DC. Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes. Biol Plant. 1997;40:357–64.
Article
CAS
Google Scholar
Alqudah AM, Samarah NH, Mullen RE. Drought stress effect on crop pollination, seed set, yield and quality. In: Lichtfouse E, editor. Alternative farming systems, biotechnology, drought stress and ecological fertilization. Dordrecht, the Netherlands: Springer; 2011. p. 193–213.
Chapter
Google Scholar
Fang Y, Du Y, Wang J, Wu A, Qiao S, Xu B. Moderate drought stress affected root growth and grain yield in old, modern and newly released cultivars of winter wheat. Front Plant Sci. 2017;8:672.
Article
Google Scholar
Paul K, Pauk J, Deak Z, Sass L, Vass I. Contrasting response of biomass and grain yield to severe drought in Cappelle Desprez and plainsman V wheat cultivars. Peer J. 2016;4:e1708.
Article
Google Scholar
Manschadi AM, Hammer GL, Christopher JT, de Voil P. Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil. 2008;303:115–29.
Article
CAS
Google Scholar
Zhu J, Kaeppler SM, Lynch JP. Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theor App Genet. 2005;111:688–95.
Article
CAS
Google Scholar
Djanaguiraman M, Prasad PVV, Kumari J, Rengel Z. Root length and root lipid composition contribute to drought tolerance of winter and spring wheat. Plant Soil. 2018. https://doi.org/10.1007/s11104-018-3794-3.
Sofi PA, Djanaguiraman M, Siddique KHM, Prasad PVV. Reproductive fitness in common bean (Phaseolus vulgaris L.) under drought stress is associated with root length and volume. Ind J Plant Physiol. 2018;23:796–809.
Article
Google Scholar
McPhee K. Variation for seedling root architecture in the core collection of pea germplasm. Crop Sci. 2005;45:1758–63.
Article
Google Scholar
Singh V, van Oosterom EJ, Jordan DR, Hunt CH, Hammer GL. Genetic variability and control of nodal root angle in sorghum. Crop Sci. 2011;51:2011–20.
Article
Google Scholar
Tomar RSS, Tiwari S, Vinod-Naik BK, Chand S, Deshmukh R, et al. Molecular and morpho-agronomical characterization of root architecture at seedling and reproductive stages for drought tolerance in wheat. PLoS One. 2016;11(6):e0156528.
Article
Google Scholar
Van Kooten O, Snel JFH. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res. 1990;25:147–50.
Article
Google Scholar
Maxwell K, Johnson GN. Chlorophyll fluorescence- a practical guide. J Exp Bot. 2000;51:659–68.
Article
CAS
Google Scholar
Baker NR. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Ann Rev Plant Biol. 2008;59:89–113.
Article
CAS
Google Scholar
SAS Institute. The SAS users guide. In: Version 9, vol. 3. USA: SAS Inst, Cary, NC; 2008.
Google Scholar
Benson NU, Asuquo FE, Williams AB, Essien JP, Ekong CI, et al. Source evaluation and trace metal contamination in benthic sediments from equatorial ecosystems using multivariate statistical techniques. PLoS One. 2016;11:e0156485.
Article
Google Scholar
Friebe B, Qi LL, Liu C, Gill BS. Genetic compensation abilities of Aegilops speltoides chromosomes for homoeologous B-genome chromosomes of polyploid wheat in disomic S(B) chromosome substitution lines. Cytogenet Genome Res. 2011;134:144–50.
Article
CAS
Google Scholar
Friebe B, Tuleen NA, Gill BS. Standard karyotype of Triticum searsii and its relationship with other S-genome species and common wheat. Theor Appl Genet. 1995;91:248–54.
Article
CAS
Google Scholar
Friebe B, Tuleen N, Jiang J, Gill BS. Standard karyotype of Triticum longissimum and its cytogenetic relationship with T. aestivum. Genome. 1993;36:731–42.
Article
CAS
Google Scholar
Friebe B, Tuleen NA, Badaeva ED, Gill BS. Cytogenetic identification of Aegilops peregrinum chromosomes added to common wheat. Genome. 1996b;39:272–6.
Article
CAS
Google Scholar
Koo H, Liu W, Friebe B, Gill BS. Homoeologous recombination in the presence of Ph1 gene in wheat. Chromosoma. 2017;126:531–40.
Article
CAS
Google Scholar
Liu C, Qi L, Liu W, Zhao W, Wilson J, et al. Development of a set of compensating Triticum aestivum-Dasypyrum villosum Robertsonian translocation lines. Genome. 2011;54:836–44.
Article
CAS
Google Scholar
Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996a;91:59–87.
Article
Google Scholar
Qi LL, Pumphrey MO, Friebe B, Zhang P, Qian C, Bowden RL, Rouse MN, Jin Y, Gill BS. A novel robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theor Appl Genet. 2011;123:159–67.
Article
CAS
Google Scholar
Qi LL, Pumphrey MO, Friebe B, Chen PD, Gill BS. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet. 2008;117:1155–16.
Article
CAS
Google Scholar