Knight MR, Knight H. Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol. 2012;195:737–51.
Article
CAS
Google Scholar
Chinnusamy V, Zhu J, Zhu JK. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007;12:444–51.
Article
CAS
Google Scholar
Medina J, Catala R, Salinas J. The CBFs: three arabidopsis transcription factors to cold acclimate. Plant Sci. 2011;180:3–11.
Article
CAS
Google Scholar
Shi Y, Ding Y, Yang S. Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant Cell Physiol. 2015;56:7–15.
Article
CAS
Google Scholar
Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, et al. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 2003;17:1043–54.
Article
CAS
Google Scholar
Zarka DG, Vogel JT, Cook D, Thomashow MF. Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol. 2003;133:910–8.
Article
CAS
Google Scholar
Thomashow MF. Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol. 2010;154:571–7.
Article
CAS
Google Scholar
Bolouri-Moghaddam MR, Le RK, Xiang L, Rolland F, dEW V. Sugar signalling and antioxidant network connections in plant cells. FEBS J. 2010;277:2022–37.
Article
CAS
Google Scholar
Suzuki N, Mittler R. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant. 2006;126:45–51.
Article
CAS
Google Scholar
Pennycooke JC, Cheng H, Stockinger EJ. Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes. Plant Physiol. 2008;146:1242–54.
Article
CAS
Google Scholar
Tan J, Wang C, Xiang B, Han R, Guo Z. Hydrogen peroxide and nitric oxide mediated cold- and dehydration-induced myo-inositol phosphate synthase that confers multiple resistances to abiotic stresses. Plant Cell Environ. 2013;36:288–99.
Article
CAS
Google Scholar
Riday H, Brummer EC. Forage yield heterosis in alfalfa. Crop Sci. 2002;42:716–23.
Article
Google Scholar
Riday H, Brummer EC, Campbell TA, Luth D, Cazcarro PM. Comparisons of genetic and morphological distance with heterosis between Medicago sativa subsp sativa and subsp falcata. Euphytica. 2003;131:37–45.
Article
CAS
Google Scholar
Zhuo C, Wang T, Lu S, Zhao Y, Li X, Guo Z. A cold responsive galactinol synthase gene from Medicago falcata (MfGolS1) is induced by myo-inositol and confers multiple tolerances to abiotic stresses. Physiol Plant. 2013;149:67–78.
Article
CAS
Google Scholar
Sambe MAN, He X, Tu Q, Guo Z. A cold-induced myo-inositol transporter-like gene (MfINT-like) confers tolerance to multiple abiotic stresses in transgenic tobacco plants. Physiol Plant. 2015;153:355–64.
Article
CAS
Google Scholar
Guo Z, Tan J, Zhuo C, Wang C, Xiang B, Wang Z. Abscisic acid, H2O2 and nitric oxide interactions mediated cold-induced S-adenosylmethionine synthetase in Medicago sativa subsp. falcata that confers cold tolerance through up-regulating polyamine oxidation. Plant Biotech J. 2014;12:601–12.
Article
CAS
Google Scholar
He X, Sambe MA, Zhuo C, Tu Q, Guo Z. A temperature induced lipocalin gene from Medicago falcata (MfTIL1) confers tolerance to cold and oxidative stress. Plant Mol Biol. 2015;87:645–54.
Article
CAS
Google Scholar
Zhuo C, Wang T, Guo Z, Lu S. Overexpression of MfPIP2-7 from Medicago falcata promotes cold tolerance and growth under NO3
− deficiency in transgenic tobacco plants. BMC Plant Biol. 2016;16:138.
Article
Google Scholar
Zhuo C, Liang L, Zhao Y, Guo Z, Lu S. A cold responsive ethylene responsive factor from Medicago falcata confers cold tolerance by up-regulation of polyamine turnover, antioxidant protection, and proline accumulation. Plant Cell Environ. 2018;41:2021–32.
CAS
PubMed
Google Scholar
Pang C, Wang C, Chen H, Guo Z, Li C. Transcript profiling of cold responsive genes in Medicago falcata. In: Yamada T, Spangenberg G, editors. Molecular breeding of forage and turf. New York: Springer; 2019. p. 141–9.
Google Scholar
Jørgensen R, Merrill AR, Andersen GR. The life and death of translation elongation factor 2. Biochem Soc T. 2006;34:1–6.
Article
Google Scholar
Caster SZ, Castillo K, Sachs MS, Bell-Pedersen D. Circadian clock regulation of mRNA translation through eukaryotic elongation factor eEF-2. Proc Natl Acad Sci U S A. 2016;113:9605–10.
Article
CAS
Google Scholar
Knight JRP, Bastide A, Roobol A, Roobol J, Jackson TJ, Utami W, et al. Eukaryotic elongation factor 2 kinase regulates the cold stress response by slowing translation elongation. Biochem J. 2015;465:227–38.
Article
CAS
Google Scholar
Guo Y, Xiong L, Ishitani M, Zhu JK. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proc Natl Acad Sci U S A. 2002;99:7786–91.
Article
CAS
Google Scholar
Ruelland E, Vaultier MN, Zachowski A, Hurry V. Cold signalling and cold acclimation in plants. Bot Res. 2009;49:36–149.
Google Scholar
Gao F, Zhou Y, Zhu W, Li X, Fan L, Zhang G. Proteomic analysis of cold stress-responsive proteins in Thellungiella rosette leaves. Planta. 2009;230:1033–46.
Article
CAS
Google Scholar
Hashimoto M, Komatsu S. Proteomic analysis of rice seedlings during cold stress. Proteomics. 2007;7:1293–302.
Article
CAS
Google Scholar
Wang X, Shan X, Ying W, Su S, Li S. Liu H, et al. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings. J Proteomic. 2016;146:14–24.
Article
CAS
Google Scholar
Nelson N, BenShem A. The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol. 2004;5:971–82.
Article
CAS
Google Scholar
Scheller HV, Jensen PE, Haldrup A, Lunde C, Knoetzel J. Role of subunits in eukaryotic photosystem I. Biochim Biophys Acta. 2001;1507:41–60.
Article
CAS
Google Scholar
Croce R, Van AH. Light-harvesting and structural organization of photosystem II: from individual complexes to thylakoid membrane. J Photoch Photobio B. 2011;104:142–53.
Article
CAS
Google Scholar
Hannah MA, Heyer AG, Hincha DK. A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet. 2005;1:e26.
Article
Google Scholar
Svensson JT, Crosatti C, Campoli C, Bassi R, Stanca AM, et al. Transcriptome analysis of cold acclimation in barley Albina and Xantha mutants. Plant Physiol. 2006;141:257–70.
Article
CAS
Google Scholar
Calzadilla PI, Maiale SJ, Ruiz OA, Escaray FJ. Transcriptome response mediated by cold stress in Lotus japonicus. Front Plant Sci. 2016;7:374.
Article
Google Scholar
Liu H, Ouyang B, Zhang J, Wang T, Li H, Zhang Y, et al. Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress. PLoS One. 2012;7(11):e50785.
Article
CAS
Google Scholar
Dekker JP, Boekema EJ. Supramolecular organization of thylakoid membrane proteins in green plants. BBA-Bioenergetics. 2005;1706:12–39.
Article
CAS
Google Scholar
Kumar PA, Parry MAJ, Mitchell RAC, Ahmad A, Abrol YP. Photosynthesis and nitrogen-use efficiency. In: Foyer CH, Noctor G, editors. Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Advances in photosynthesis research. Amsterdam: Kluwer; 2002. p. 23–34.
Google Scholar
Niyogi KK, Truong TB. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol. 2013;16:307–14.
Article
CAS
Google Scholar
Iida K, Seki MT, Sakurai T, Satou M, Akiyama K, Toyoda T, Konagaya A, Shinozaki K. Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full-length cDNA sequences. Nucleic Acids Res. 2004;32:5096–103.
Article
CAS
Google Scholar
Palusa SG, Ali GS, Reddy ASN. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. Plant J. 2007;49:1091–107.
Article
CAS
Google Scholar
Lee BH, Kapoor A, Zhu J, Zhu JK. STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell. 2006;18:1736–49.
Article
CAS
Google Scholar
Wollerton MC, Gooding C, Wagner EJ, Garcia-Blanco MA, Smith CW. Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol Cell. 2004;13:91–100.
Article
CAS
Google Scholar
Mazzucotelli E, Mastrangelo AM, Crosatti C, Guerra D, Stanca M, Cattivelli L. Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription. Plant Sci. 2008;174:420–31.
Article
CAS
Google Scholar
Schindler S, Szafranski K, Hiller M, Ali GS, Palusa SG, Backofen R, et al. Alternative splicing at NAGNAG acceptors in Arabidopsis thaliana SR and SR-related protein-coding genes. BMC Genomics. 2008;9:159.
Article
Google Scholar
Wang X, Wu F, Xie Q, Wang H, Wang Y, Yue Y, Gahura O, Ma S, Liu L, Cao Y, Jiao Y, Puta F, McClung CR, Xu X, Ma L. Skip is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis. Plant Cell. 2012;24:3278–95.
Article
CAS
Google Scholar
Chen Z, Qin C, Lin L, Zeng X, Zhao Y, He S, Lu S, Guo Z. Overexpression of yeast arabinono-1,4-lactone oxidase gene (ALO) increases tolerance to oxidative stress and Al toxicity in transgenic tobacco plants. Plant Mol Biol Rep. 2015;33:806–18.
Article
CAS
Google Scholar
Shi J, Chen Y, Xu Y, Ji D, Chen C, Xie C. Differential proteomic analysis by iTRAQ reveals the mechanism of pyropia haitanensis responding to high temperature stress. Sci Rep. 2017;7:44734.
Article
CAS
Google Scholar