Su PL, Ming J, Liao HR, Hu GQ, Wang JC, Wu RC, Li ZY. Distribution of Fraxinus hupehensis germplasm resources. Hubei Forest Sci. Technol. 1994;1:35–6.
Google Scholar
Su PL, Ming J, Liao HR, Hu GQ, Wang JC, Wu RC, Li ZY. The comprehensive utilization value and prospect of the development of Fraxinus hupehensis resources. Hubei Forest Sci. Technol. 1995;4:1–5.
Google Scholar
Peng FS, Li HJ. The second batch of rare and endangered plants in Hubei. Hubei Forest Sci Technol. 1990;8:38–9.
Google Scholar
Zhang MH. Seasonal management of the festival ash in the Lingnan area. Chin Flower Bonsai. 2003;8:51.
Google Scholar
Zhang J. Research overview and prospects of Fraxinus hupehensis. Hubei Forest Sci. Technol. 2015;44:27–9.
Google Scholar
Wang CW, Liu R, Yi MB. Fraxinus hupehensis seed seedling raising technique. Hubei Forest Sci. Technol. 2013;42:87–8.
Google Scholar
Wang CY, Zhao MG, Yao YJ, Wang CJ, Shu ZM. Study on the technique of Fraxinus hupehensis cutting. J Beijing Forest Univ. 2001;23:18–20.
CAS
Google Scholar
Ma L, Yan H, Qu J, Zhang Y. Extraction technics of total coumarins from the leaf of Fraxinus Hupehensis. Herald Med. 2010;29:925–8.
CAS
Google Scholar
Su PL. Reproduction of Fraxinus hupehensis. Hubei Forest Sci. Technol. 1995;3:14–20.
Google Scholar
Yang P, Liu X, Wang X, Chen H, Chen F, Shen S. Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics. 2010;7:3358–68.
Article
CAS
Google Scholar
Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell. 2003;15:1591–604.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shibakusa R. Effect of GA3, IAA, ethrel and BA on seed germination of Picea glehnii masters. J Jpn For Society. 2008;62:440–3.
Google Scholar
Pawłowski TA. Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: influence of abscisic and gibberellic acids. BMC Plant Biol. 2009;9:48–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun TP, Gubler F. Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol. 2004;55:197–223.
Article
CAS
PubMed
Google Scholar
Hussain A, Cao D, Peng J. Identification of conserved tyrosine residues important for gibberellin sensitivity of Arabidopsis RGL2 protein. Planta. 2007;226:475–83.
Article
CAS
PubMed
Google Scholar
Cao D, Cheng H, Wu W, Soo HM, Peng J. Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiol. 2006;142:509–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Penfield S, Li Y, Gilday AD, Graham S, Graham IA. Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell. 2006;18:1887–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu Y, Guo G, Lv D, Hu Y, Li J, Li X, Yan Y. Transcriptome analysis during seed germination of elite Chinese bread wheat cultivar Jimai 20. BMC Plant Biol. 2014;14:20–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mangrauthia SK, Agarwal S, Sailaja B, Sarla N, Voleti SR. Transcriptome analysis of Oryza sativa (Rice) seed germination at high temperature shows dynamics of genome expression associated with hormones signalling and abiotic stress pathways. Trop Plant Biol. 2016;9:215–28.
Article
CAS
Google Scholar
Sun J, Wang P, Zhou T, Rong J, Jia H, Liu Z. Transcriptome analysis of the effects of shell removal and exogenous gibberellin on germination of Zanthoxylum seeds. Sci Rep. 2017;7:8521–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hauvermale AL, Tuttle KM, Takebayashi Y, Seo M, Steber CM. Loss of Arabidopsis thaliana seed dormancy is associated with increased accumulation of the GID1 GA hormone receptors. Plant Cell Physiol. 2015;56:1773–85.
Article
CAS
PubMed
Google Scholar
Liu Y, Zhang J, Gang LI, Wang Q, Xu SY. The research for the germination characteristics of Fraxinus hupehensis seeds. Seed. 2016;35:27–31.
Google Scholar
Yamaguchi S. Gibberellin biosynthesis in Arabidopsis. Phytochem Rev. 2006;5(1):39–47.
Article
CAS
Google Scholar
Lee BH, Henderson DA, Zhu JK. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell. 2005;17:3155–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barrôco RM, Van Poucke K, Bergervoet JH, De Veylder L, Groot SP, Inzé D, Engler G. The role of the cell cycle machinery in resumption of postembryonic development. Plant Physiol. 2005;137:127–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masubelele NH, Dewitte W, Menges M, Maughan S, Collins C, Huntley R, Nieuwland J, Scofield S, Murray JA. D-type cyclins activate division in the root apex to promote seed germination in Arabidopsis. Proc Natl Acad Sci U S A. 2005;102:15694–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Catusse J, Job C, Job D. Transcriptome- and proteome-wide analyses of seed germination. C R Biol. 2008;331:815–22.
Article
CAS
PubMed
Google Scholar
Downie B, Bewley JD. Soluble sugar content of white spruce (Picea glauca) seeds during and after germination. Physiol Plant. 2000;110:1–12.
Article
CAS
Google Scholar
Sun P, Jiangui LI, Wang N. Effect of foliar fertilizers and GA3 on sugar accumulation in fruit of Junzao jujube during its growth and development. Acta Agric Boreali-Occidentalis Sin. 2011;20:98–102.
CAS
Google Scholar
Fan WL, Li TL, Feng Y. Effect of gibberellin (CA_3) on carbohydrate metabolism of Aralia continentalis seeds in the dormancy-breaking process. J Shenyang Agric Univ. 2013;44:708–11.
CAS
Google Scholar
Weitbrecht K, Müller K, Leubnermetzger G. First off the mark: early seed germination. J Exp Bot. 2011;62:3289–309.
Article
CAS
PubMed
Google Scholar
Bao YZ, Yao ZQ, Cao XL, Peng JF, Xu Y, Chen MX, et al. Transcriptome analysis of Phelipanche aegyptiaca seed germination mechanisms stimulated by fluridone, TIS108, and GR24. PLoS One. 2017;12:e0187539.
Article
CAS
PubMed
PubMed Central
Google Scholar
Botha FC, Potgieter GP, Botha AM. Respiratory metabolism and gene expression during seed germination. Plant Growth Regul. 1992;11:211–24.
Article
CAS
Google Scholar
Benamar A, Rolletschek H, Borisjuk L, Avelange-Macherel MH, Curien G, Mostefai HA, et al. Nitrite-nitric oxide control of mitochondrial respiration at the frontier of anoxia. Biochim Biophys Acta Bioenerg. 2008;1777:1268–75.
Article
CAS
Google Scholar
Li A, Zhang Y, Zhao Z, Wang M, Zan L. Molecular characterization and transcriptional regulation analysis of the bovine PDHB gene. PLoS One. 2016;11:e0157445.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao Z, Tian F, Cao X, Xu Y, Chen M, Xiang B, et al. Global transcriptomic analysis reveals the mechanism of Phelipanche aegyptiaca seed germination. Int J Mol Sci. 2016;17:1139–58.
Article
CAS
PubMed Central
Google Scholar
Wu YQ, Leng YF, Xia C, Zhou SF, Lan H. Comparative analysis of endogenous hormones in maize seeds with different dormancy characteristics. Acta Prataculturae Sin. 2015;24:213–9.
Google Scholar
Villalobos N, Martin L. Involvement of cytokinins in the germination of chick-pea seeds. Plant Growth Regul. 1992;11:277–91.
Article
CAS
Google Scholar
Stirk WA, Novák O, Zižková E, Motyka V, Strnad M, Staden JV. Changes in endogenous cytokinins during germination and seedling establishment of Tagetes minuta L. Plant Growth Regul. 2005;47:1–7.
Article
CAS
Google Scholar
Cai L, Zhang L, Fu Q, Xu ZF. Identification and expression analysis of cytokinin metabolic genes IPTs, CYP735A and CKXs in the biofuel plant Jatropha curcas. Peerj. 2018;6:e4812.
Article
PubMed
PubMed Central
Google Scholar
Miyawaki K, Tarkowski P, Miho MK, Kato T, Sato S, Tarkowska D, et al. Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci U S A. 2006;103:16598–603.
Martin RC, Mok MC, Mok DW. Isolation of a cytokinin gene, ZOG1, encoding zeatin O-glucosyltransferase from Phaseolus lunatus. Proc Natl Acad Sci U S A. 1999;96:284–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richards DE, King KE, Tahar A, Harberd NP. How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol. 2001;52:67–88.
Fabian T, Lorbiecke R, Umeda M, Sauter M. The cell cycle genes cycA1;1 and cdc2Os-3 are coordinately regulated by gibberellin in planta. Planta. 2000;211:376–83.
Article
CAS
PubMed
Google Scholar
Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S. Comparative genomics of Rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol. 2004;135:756–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olszewski N, Sun TP, Gubler F. Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell. 2002;14 Suppl:S61–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ueguchitanaka M, Nakajima M, Motoyuki A, Matsuoka M. Gibberellin receptor and its role in gibberellin signaling in plants. Annu Rev Plant Biol. 2007;58:183–98.
Article
CAS
Google Scholar
Fu X, Richards DE, Tahar A, Hynes LW, Ougham H, Peng J, Harberd NP. Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. Plant Cell. 2002;14:3191–200.
Tunnacliffe A, Wise MJ. The continuing conundrum of the LEA proteins. Naturwissenschaften. 2007;94:791–812.
Article
CAS
PubMed
Google Scholar
Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, Hess B, et al. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. J Exp Bot. 2007;58:3047–60.
Article
CAS
PubMed
Google Scholar
Zhu G, Ye N, Zhang J. Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol. 2009;50:644–51.
Article
CAS
PubMed
Google Scholar
Müller K, Tintelnot S, Gerhard LM. Endosperm-limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol. 2006;47:864–77.
Linkies A, Müller K, Morris K, Turecková V, Wenk M, Cadman CS, et al. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell. 2009;21:3803–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kucera B, Cohn MA, Gerhard LM. Plant hormone interactions during seed dormancy release and germination. Seed Sci Res. 2005;15:281–307.
Hwang SG, Chen HC, Huang WY, Chu YC, Shii CT, Cheng WH. Ectopic expression of rice OsNCED3 in Arabidopsis increases ABA level and alters leaf morphology. Plant Sci. 2010;178:12–22.
Article
CAS
Google Scholar
Lee HG, Lee K, Seo PJ. The Arabidopsis MYB96 transcription factor plays a role in seed dormancy. Plant Mol Biol. 2015;87:371–81.
Article
CAS
PubMed
Google Scholar
Gosti F, Beaudoin N, Serizet C, Webb AA, Vartanian N, Giraudat J. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell. 1999;11:1897–909.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirayama T, Shinozaki K. Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci. 2007;12:343–51.
Article
CAS
PubMed
Google Scholar
Wang Z, Cheng K, Wan L, Yan L, Jiang H, Liu S, et al. Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes. BMC Genomics. 2015;16:1053–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L. The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell. 2008;20:2729–45.
Article
PubMed
PubMed Central
Google Scholar
Jin D, Wu M, Li B, Bücker B, Keil P, Zhang S, et al. The COP9 signalosome regulates seed germination by facilitating protein degradation of RGL2 and ABI5. PLoS Genet. 2018;14:e1007237.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao FY, Jiao CJ, Chen Q, WangTS TCF, Gao YM. PKS5 kinase is involved in ABA response through phosphorylating ABI5 in arabidopsis. Plant Physiol. J. 2015;51:1719–28.
CAS
Google Scholar
Li H, Yao W, Fu Y, Li S, Guo Q. De novo assembly and discovery of genes that are involved in drought tolerance in Tibetan Sophora moorcroftiana. PLoS One. 2015;10:e111054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Q, Zhao HX, Li PP, Zeng WJ, Li YH, Ge FW, et al. De novo characterization of the seed transcriptome of Lepidium apetalum Willd. China Biotechnol. 2016;36:38–46.
Google Scholar
Xu Y, Gao S, Yang Y, Huang M, Cheng L, Wei Q, Fei Z, Gao J, Hong B. Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genomics. 2013;14:662–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang XC, Zhao QY, Ma CL, Zhang ZH, Cao HL, Kong YM, et al. Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics. 2013;14:415–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waites R, Selvadurai HR, Oliver IR, Hudson A. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell. 1998;93:779–89.
Article
CAS
PubMed
Google Scholar
Nguyen XC, Hoang MH, Kim HS, Lee K, Liu XM, Kim SH, et al. Phosphorylation of the transcriptional regulator MYB44 by mitogen activated protein kinase regulates Arabidopsis seed germination. Biochem Biophys Res Commun. 2012;423:703–8.
Article
CAS
PubMed
Google Scholar
Toledo-Ortiz G, Huq E, Quail PH. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell. 2003;15:1749–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Penfield S, Josse EM, Kannangara R, Gilday AD, Halliday KJ, Graham IA. Cold and light control seed germination through the bHLH transcription factor SPATULA. Curr Biol. 2005;15:1998–2006.
Article
CAS
PubMed
Google Scholar
Leivar P, Monte E. PIFs: systems integrators in plant development. Plant Cell. 2014;26:56–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kato N, Dubouzet E, Kokabu Y, Yoshida S, Taniguchi Y, Dubouzet JG, et al. Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in Coptis japonica. Plant Cell Physiol. 2007;48:8–18.
Article
CAS
PubMed
Google Scholar
Miao Y, Laun T, Zimmermann P, Zentgraf U. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol. 2004;55:853–67.
Article
CAS
PubMed
Google Scholar
Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, et al. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J. 2008;6:486–503.
Article
CAS
PubMed
Google Scholar
Ohmetakagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell. 1995;7:173–82.
Article
CAS
Google Scholar
Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J. 2005;42:689–707.
Article
CAS
PubMed
Google Scholar
George C, Michael M, Elizabeth K, Sarah H, Schmidt RJ. The control of spikelet meristem identity by the branched silkless1 gene in maize. Science. 2002;298:1238–41.
Article
CAS
Google Scholar
Marc J, Bernd W, Wolfgang DL, Jesus VC, Jens T, Thomas K, et al. bZIP transcription factors in Arabidopsis. Trend Plant Sci. 2002;7:106–11.
Hsieh WP, Hsieh HL, Wu SH. Arabidopsis bZIP16 transcription factor integrates light and hormone signaling pathways to regulate early seedling development. Plant Cell. 2012;24:3997–4011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katagiri F, Lam E, Chua NH. Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature. 1989;340:727–30.
Article
CAS
PubMed
Google Scholar
Sun T, Busta L, Zhang Q, Ding P, Jetter R, Zhang Y. TGACG-BINDING FACTOR 1 (TGA1) and TGA4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) and CALMODULIN-BINDING PROTEIN 60g (CBP60g). New Phytol. 2017;217:344–54.
Article
CAS
PubMed
Google Scholar
Cheng CP, Jaag HM, Jonczyk M, Serviene E, Nagy PD. Expression of the Arabidopsis Xrn4p 5′–3′ exoribonuclease facilitates degradation of tombusvirus RNA and promotes rapid emergence of viral variants in plants. Virology. 2007;368:238–48.
Article
CAS
PubMed
Google Scholar
Martin FG, Christy F, Bodil N, Jens LA. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell. 2005;20:905–15.
Carlos PR, Tamara HV, Rosa LC, María MC, Julio S. LSM proteins provide accurate splicing and decay of selected transcripts to ensure normal Arabidopsis development. Plant Cell. 2012;24:4930–47.
Sandler H, Kreth J, Timmers HT, Stoecklin G. Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Res. 2011;39:4373–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, et al. Seed germination and vigor. Annu Rev Plant Biol. 2012;63:507–33.
Article
CAS
PubMed
Google Scholar
Fleming MB, Richards CM, Walters C. Decline in RNA integrity of dry-stored soybean seeds correlates with loss of germination potential. J Exp Bot. 2017;68:2219–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isabelle BS, Stéphanie P, Françoise C, Juliette L, Christophe B. 5′ to 3′ mRNA decay contributes to the regulation of Arabidopsis seed germination by dormancy. Plant Physiol. 2017;173:1709–23.
Khafagy EZ, Mousa AM. Nucleic acids and protein metabolic changes during germination of cotton seed. Z Pflanzenphysiol. 1982;107:321–8.
Article
CAS
Google Scholar
Liu ZY, Jiang WB. Effects of GA3 on postharvest lignification of green asparagus. Sci Agric Sin. 2005;38:383–7.
CAS
Google Scholar
Harty RL, Paleg LG, Aspinall D. Quantitative reduction of triphenyl tetrazolium chloride as a measure of viability in cereal seeds. Aust J Exp Agric. 1972;12:517–22.
Article
CAS
Google Scholar
Gill PK, Sharma AD, Singh P, Bhullar SS. Changes in germination, growth and soluble sugar contents of Sorghum bicolor (L.) Moench seeds under various abiotic stresses. Plant Growth Regul. 2003;40:157–62.
Article
CAS
Google Scholar
Ding J, Shen ZD, Fang YX, Feng XX, Li L, Ni JS. Extraction, isolation and biological identification of plant endogenous hormones. Plant Physiol J. 1979;2:27–39.
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2010;26:136–8.
Article
CAS
PubMed
Google Scholar
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.
Article
CAS
PubMed
Google Scholar