Green TR, Ryan CA. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science. 1972;175(4023):776–7.
Article
CAS
PubMed
Google Scholar
Schilmiller AL, Howe GA. Systemic signaling in the wound response. Curr Opin Plant Biol. 2005;8(4):369–77.
Article
CAS
PubMed
Google Scholar
Wasternack C, Stenzel I, Hause B, Hause G, Kutter C, Maucher H, Neumerkel J, Feussner I, Miersch O. The wound response in tomato–role of jasmonic acid. J Plant Physiol. 2006;163(3):297–306.
Article
CAS
PubMed
Google Scholar
Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 2002;129(2):661–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mithöfer A, Boland W. Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol. 2012;63:431–50.
Article
CAS
PubMed
Google Scholar
Maffei ME, Mithöfer A, Boland W. Before gene expression: early events in plant–insect interaction. Trends Plant Sci. 2007;12(7):310–6.
Article
CAS
PubMed
Google Scholar
Maffei ME, Mithöfer A, Boland W. Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistrys. 2007;68(22–24):2946–59.
Article
CAS
Google Scholar
Howe GA, Jander G. Plant immunity to insect herbivores. Annu Rev Plant Biol. 2008;59:41–66.
Article
CAS
PubMed
Google Scholar
Koo AJ, Howe GA. The wound hormone jasmonate. Phytochemistry. 2009;70(13–14):1571–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilroy S, Białasek M, Suzuki N, Górecka M, Devireddy AR, Karpiński S, Mittler R. ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol. 2016;171(3):1606–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farmer EE, Gasperini D, Acosta IF. The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding. New Phytol. 2014;204(2):282–8.
Article
CAS
PubMed
Google Scholar
Wu J, Baldwin IT. Herbivory induced signalling in plants: perception and action. Plant Cell Environ. 2009;32(9):1161–74.
Article
CAS
PubMed
Google Scholar
Erb M, Meldau S, Howe GA. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 2012;17(5):250–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kerchev PI, Fenton B, Foyer CH, Hancock RD. Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell Environ. 2012;35(2):441–53.
Article
CAS
PubMed
Google Scholar
Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. J Exp Bot. 2013;65(5):1229–40.
Article
CAS
PubMed
Google Scholar
Zebelo SA, Maffei ME. Role of early signalling events in plant–insect interactions. J Exp Bot. 2014;66(2):435–48.
Article
CAS
PubMed
Google Scholar
Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal. 2009;2(84):ra45.
Article
PubMed
Google Scholar
Katsir L, Chung HS, Koo AJ, Howe GA. Jasmonate signaling: a conserved mechanism of hormone sensing. Curr Opin Plant Biol. 2008;11(4):428–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung HS, Niu Y, Browse J, Howe GA. Top hits in contemporary JAZ: an update on jasmonate signaling. Phytochemistry. 2009;70(13–14):1547–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howe GA, Major IT, Koo AJ. Modularity in jasmonate signaling for multistress resilience. Annu Rev Plant Biol. 2018;69:387–415.
Article
CAS
PubMed
Google Scholar
Cheong JJ, Do Choi Y. Methyl jasmonate as a vital substance in plants. Trends Genet. 2003;19(7):409–13.
Article
CAS
PubMed
Google Scholar
Wasternack C, Feussner I. The oxylipin pathways: biochemistry and function. Annu Rev Plant Biol. 2018;69:363–86.
Article
CAS
PubMed
Google Scholar
León J, Rojo E, Sánchez-Serrano JJ. Wound signalling in plants. J Exp Bot. 2001;52(354):1–9.
Article
PubMed
Google Scholar
Titarenko E, Rojo E, Leon J, Sanchez-Serrano JJ. Jasmonic acid-dependent and -independent signaling pathways control wound-induced gene activation in Arabidopsis thaliana. Plant Physiol. 1997;115(2):817–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
LeBrasseur ND, MacIntosh GC, Pérez-Amador MA, Saitoh M, Green PJ. Local and systemic wound-induction of RNase and nuclease activities in Arabidopsis: RNS1 as a marker for a JA-independent systemic signaling pathway. Plant J. 2002;29(4):393–403.
Article
CAS
PubMed
Google Scholar
Reymond P, Weber H, Damond M, Farmer EE. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell. 2000;12(5):707–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korth KL, Dixon RA. Evidence for chewing insect-specific molecular events distinct from a general wound response in leaves. Plant Physiol. 1997;115(4):1299–305.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heil M. Damaged-self recognition in plant herbivore defence. Trends Plant Sci. 2009;14(7):356–63.
Article
CAS
PubMed
Google Scholar
Dudareva N, Negre F, Nagegowda DA, Orlova I. Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci. 2006;25(5):417–40.
Article
CAS
Google Scholar
Loreto F, Schnitzler JP. Abiotic stresses and induced BVOCs. Trends Plant Sci. 2010;15(3):154–66.
Article
CAS
PubMed
Google Scholar
Knudsen JT, Gershenzon J. The chemical diversity of floral scent. In: Dudareva N, Pichersky E, editors. Biology of floral scent. Boca Raton, FL:CRC Press; 2006. p. 27–52.
Röse US, Tumlinson JH. Volatiles released from cotton plants in response to Helicoverpa zea feeding damage on cotton flower buds. Planta. 2004;218(5):824–32.
Article
CAS
PubMed
Google Scholar
Röse US, Tumlinson JH. Systemic induction of volatile release in cotton: how specific is the signal to herbivory? Planta 2005;222(2):327–335.
Rodriguez-Saona CR, Frost CJ. New evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores. Plant Signal Behav. 2010;5(1):58–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scala A, Allmann S, Mirabella R, Haring MA, Schuurink RC. Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens. Int J Mol Sci. 2013;14(9):17781–811.
Article
CAS
PubMed
PubMed Central
Google Scholar
Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH. Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci U S A. 2004;101(6):1781–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scala A, Mirabella R, Mugo C, Matsui K, Haring MA, Schuurink RC. E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis. Front Plant Sci. 2013;4:74.
Article
PubMed
PubMed Central
Google Scholar
Baldwin IT. Plant volatiles. Curr Biol. 2010;20:R392–7. https://doi.org/10.1016/j.cub.2010.02.052.
Article
CAS
PubMed
Google Scholar
Dong F, Fu X, Watanabe N, Su X, Yang Z. Recent advances in the emission and functions of plant vegetative volatiles. Molecules. 2016;21(2):124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee K, Seo PJ. Airborne signals from salt-stressed Arabidopsis plants trigger salinity tolerance in neighboring plants. Plant Signal Behav. 2014;9(3):e28392.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holopainen JK, Gershenzon J. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 2010;15(3):176–84.
Article
CAS
PubMed
Google Scholar
Ye M, Glauser G, Lou Y, Erb M, Hu L. Molecular dissection of early defense signaling underlying volatile-mediated defense regulation and herbivore resistance in rice. Plant Cell. 2019;31(3):687–98.
Kessler A, Halitschke R, Diezel C, Baldwin IT. Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia. 2006;148(2):280–92.
Article
PubMed
Google Scholar
Heil M, Bueno JC. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci U S A. 2007;104(13):5467–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frost CJ, Mescher MC, Carlson JE, De Moraes CM. Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol. 2008;146:818–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karban R, Shiojiri K, Huntzinger M, McCall AC. Damage-induced resistance in sagebrush: volatiles are key to intra-and interplant communication. Ecology. 2006;87(4):922–30.
Article
PubMed
Google Scholar
Shiojiri K, Ozawa R, Matsui K, Sabelis MW, Takabayashi J. Intermittent exposure to traces of green leaf volatiles triggers a plant response. Sci Rep. 2012;2:378. https://doi.org/10.1038/srep00378.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ton J, D’alessandro M, Jourdie V, Jakab G, Karlen D, Held M, Mauch-Mani B, Turlings TC. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 2007;49(1):16–26.
Article
CAS
PubMed
Google Scholar
Frost CJ, Appel HM, Carlson JE, De Moraes CM, Mescher MC, Schultz JC. Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol Lett. 2007;10(6):490–8.
Article
PubMed
Google Scholar
Kim J, Felton GW. Priming of antiherbivore defensive responses in plants. Insect Sci. 2013;20(3):273–85.
Article
CAS
PubMed
Google Scholar
Matsui K. Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol. 2006;9(3):274–80.
Article
CAS
PubMed
Google Scholar
Watkins E, Gianfagna TJ, Sun R, Meyer WA. Volatile compounds of tufted hairgrass. Crop Sci. 2006;46:2575–80.
Article
CAS
Google Scholar
Zimmermann MR, Maischak H, Mithöfer A, Boland W, Felle HH. System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiol. 2009;149(3):1593–600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Felle HH, Zimmermann MR. Systemic signalling in barley through action potentials. Planta. 2007;226(1):203.
Article
CAS
PubMed
Google Scholar
Rakwal R, Tamogami S, Agrawal GK, Iwahashi H. Octadecanoid signaling component “burst” in rice (Oryza sativa L.) seedling leaves upon wounding by cut and treatment with fungal elicitor chitosan. Biochem Biophys Res Comm. 2002;295(5):1041–5.
Article
CAS
PubMed
Google Scholar
Agrawal GK, Tamogami S, Han O, Iwahashi H, Rakwal R. Rice octadecanoid pathway. Biochem Biophys Res Comm. 2004;317(1):1–5.
Article
CAS
PubMed
Google Scholar
Zhou G, Qi J, Ren N, Cheng J, Erb M, Mao B, Lou Y. Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant J. 2009;60(4):638–48.
Article
CAS
PubMed
Google Scholar
Wakuta S, Suzuki E, Saburi W, Matsuura H, Nabeta K, Imai R, Matsui H. OsJAR1 and OsJAR2 are jasmonyl-L-isoleucine synthases involved in wound-and pathogen-induced jasmonic acid signalling. Biochem Biophys Res Comm. 2011;409(4):634–9.
Article
CAS
PubMed
Google Scholar
Szczegielniak J, Borkiewicz L, Szurmak B, Lewandowska-Gnatowska E, Statkiewicz M, Klimecka M, Cieśla J, Muszyńska G. Maize calcium-dependent protein kinase (ZmCPK11): local and systemic response to wounding, regulation by touch and components of jasmonate signaling. Physiol Plant. 2012;146(1):1–4.
Article
CAS
PubMed
Google Scholar
Cho K, Agrawal GK, Jwa NS, Kubo A, Rakwal R. Rice OsSIPK and its orthologs: a “central master switch” for stress responses. Biochem Biophys Res Comm. 2009;379(3):649–53.
Article
CAS
PubMed
Google Scholar
Shen S, Jing Y, Kuang T. Proteomics approach to identify wound-response related proteins from rice leaf sheath. Proteomics. 2003;3(4):527–35.
Article
CAS
PubMed
Google Scholar
Lawrence SD, Novak NG. Maize genes induced by herbivory and volicitin. J Chem Ecol. 2004;30(12):2543–57.
Article
CAS
PubMed
Google Scholar
Zhang F, Zhu L, He G. Differential gene expression in response to brown planthopper feeding in rice. J Plant Physiol. 2004;161(1):53–62.
Article
CAS
PubMed
Google Scholar
Kim KM, Cho SK, Shin SH, Kim GT, Lee JH, Oh BJ, Kang KH, Hong JC, Choi JY, Shin JS, Chung YS. Analysis of differentially expressed transcripts of fungal elicitor-and wound-treated wild rice (Oryza grandiglumis). J Plant Res. 2005;118(5):347–54.
Article
CAS
PubMed
Google Scholar
van Loon LC, Rep M, Pieterse CM. Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol. 2006;44:135–62.
Article
CAS
PubMed
Google Scholar
Schmelz EA, Alborn HT, Tumlinson JH. The influence of intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays. Planta. 2001;214(2):171–9.
Article
CAS
PubMed
Google Scholar
Piesik D, Pańka D, Delaney KJ, Skoczek A, Lamparski R, Weaver DK. Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp.), or fungal infection (Fusarium spp.). J Plant Physiol. 2011;168(9):878–86.
Article
CAS
PubMed
Google Scholar
Tamayo MC, Rufat M, Bravo JM, San Segundo B. Accumulation of a maize proteinase inhibitor in response to wounding and insect feeding, and characterization of its activity toward digestive proteinases of Spodoptera littoralis larvae. Planta. 2000;211(1):62–71.
Article
CAS
PubMed
Google Scholar
Tiffin P, Gaut BS. Molecular evolution of the wound-induced serine protease inhibitor wip1 in Zea and related genera. Mol Biol Evol. 2001;18(11):2092–101.
Article
CAS
PubMed
Google Scholar
Mur LA, Xu R, Casson SA, Stoddart WM, Routledge AP, Draper J. Characterization of a proteinase inhibitor from Brachypodium distachyon suggests the conservation of defence signalling pathways between dicotyledonous plants and grasses. Mol Plant Pathol. 2004;5(4):267–80.
Article
CAS
PubMed
Google Scholar
Le Deunff E, Davoine C, Le Dantec C, Billard JP, Huault C. Oxidative burst and expression of germin/oxo genes during wounding of ryegrass leaf blades: comparison with senescence of leaf sheaths. Plant J. 2004;38:421–31.
Article
CAS
PubMed
Google Scholar
Dombrowski JE, Hind SR, Martin RC, Stratmann JW. Wounding systemically activates a mitogen-activated protein kinase in forage and turf grasses. Plant Sci. 2011;180:686–93.
Article
CAS
PubMed
Google Scholar
Chen S, Cai Y, Zhang L, Yan X, Cheng L, Qi D, Zhou Q, Li X, Liu G. Transcriptome analysis reveals common and distinct mechanisms for sheepgrass (Leymus chinensis) responses to defoliation compared to mechanical wounding. PLoS One. 2014;9(2):e89495.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Gouw JA, Howard CJ, Custer TG, Fall R. Emissions of volatile organic compounds from cut grass and clover are enhanced during the drying process. Geophy Res Lett. 1999;26(7):811–4.
Article
Google Scholar
Ozawa R, Shiojiri K, Matsui K, Takabayashi J. Intermittent exposure to traces of green leaf volatiles triggers the production of (Z)-3-hexen-1-yl acetate and (Z)-3-hexen-1-ol in exposed plants. Plant Signal Behav. 2013;8(11):e27013.
Dombrowski JE, Martin RC. Green leaf volatiles, fire and nonanoic acid activate MAPkinases in the model grass species Lolium temulentum. BMC Res Notes. 2014;7(1):807.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dombrowski JE, Martin RC. Activation of MAP kinases by green leaf volatiles in grasses. BMC Res Notes. 2018;11(1):79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dombrowski JE, Martin RC. Abiotic stresses activate a MAPkinase in the model grass species Lolium temulentum. J Plant Physiol. 2012;169:915–9.
Article
CAS
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52. https://doi.org/10.1038/nbt.1883.
Article
CAS
PubMed
PubMed Central
Google Scholar
Islam MS, Studer B, Byrne SL, Farrell JD, Panitz F, Bendixen C, Møller IM, Asp T. The genome and transcriptome of perennial ryegrass mitochondria. BMC Genomics. 2013;14:202. https://doi.org/10.1186/1471-2164-14-202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
PubMed
Google Scholar
Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, GenBank SEW. Nucleic Acids Res. 2016;44(Database issue):D67–72.
Article
CAS
PubMed
Google Scholar
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45:D158–D69.
Article
CAS
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal. 2011;17(1):10.
Article
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013;arXiv:1303.3997.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2013;31(1):46.
Article
CAS
PubMed
Google Scholar
Goff L, Trapnell C, cummeRbund KD. Analysis, exploration, manipulation, and visualization of cufflinks high-throughput sequencing data. R package version. 2013;2:0.
Google Scholar
Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 2006;34(suppl_2):W293–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dombrowski JE, Martin RC. Evaluation of reference genes for quantitative RT-PCR in Lolium temulentum under abiotic stress. Plant Sci. 2009;176(3):390–6.
Article
CAS
Google Scholar
Evans LT. Lolium temulentum L., a long-day plant requiring only one inductive photocycle. Nature. 1958;182:197–8.
Article
Google Scholar
Bleecker AB, Kende H. Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Devel Biol. 2000;16(1):1–8.
Article
CAS
Google Scholar
Suza WP, Staswick PE. The role of JAR1 in jasmonoyl-L-isoleucine production during Arabidopsis wound response. Planta. 2008;227(6):1221–32.
Article
CAS
PubMed
Google Scholar
Stone JM, Walker JC. Plant protein kinase families and signal transduction. Plant Physiol. 1995;108(2):451–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dissmeyer N, Schnittger A. The age of protein kinases. Methods Mol Biol. 2011;779:7–52.
Diévart A, Clark SE. LRR-containing receptors regulating plant development and defense. Development. 2004;131(2):251–61.
Article
CAS
PubMed
Google Scholar
Schaller A. A cut above the rest: the regulatory function of plant proteases. Planta. 2004;220(2):183–97.
Article
CAS
PubMed
Google Scholar
Al-Whaibi MH. Plant heat-shock proteins: a mini review. J King Saud University-Science. 2011;23(2):139–50.
Article
Google Scholar
Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004;9(5):244–52.
Article
CAS
PubMed
Google Scholar
Tuteja N, Mahajan S. Calcium signaling network in plants: an overview. Plant Signal Behav. 2007;2(2):79–85.
Article
PubMed
PubMed Central
Google Scholar
Batistič O, Kudla J. Analysis of calcium signaling pathways in plants. Biochim Biophys Acta (BBA)-General Subjects. 2012;1820(8):1283–93.
Article
CAS
Google Scholar
Cosgrove DJ. Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol. 2015;25:162–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashraf MF, Foolad M. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot. 2007;59(2):206–16.
Article
CAS
Google Scholar
Jeong J, Connolly EL. Iron uptake mechanisms in plants: functions of the FRO family of ferric reductases. Plant Sci. 2009;176(6):709–14.
Article
CAS
Google Scholar
Tenhaken R. Cell wall remodeling under abiotic stress. Front Plant Sci. 2015;5:771.
Article
PubMed
PubMed Central
Google Scholar
Conrath U. Molecular aspects of defence priming. Trends Plant Sci. 2011;16(10):524–31.
Article
CAS
PubMed
Google Scholar
Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V. Primed plants do not forget. Environ Exper Bot. 2013;94:46–56.
Article
CAS
Google Scholar
Balmer A, Pastor V, Gamir J, Flors V, Mauch-Mani B. The ‘prime-ome’: towards a holistic approach to priming. Trends Plant Sci. 2015;20(7):443–52.
Article
CAS
PubMed
Google Scholar
Hirao T, Okazawa A, Harada K, Kobayashi A, Muranaka T, Hirata K. Green leaf volatiles enhance methyl jasmonate response in Arabidopsis. J Biosci Bioeng. 2012;114(5):540–5.
Article
CAS
PubMed
Google Scholar
Ameye M, Allmann S, Verwaeren J, Smagghe G, Haesaert G, Schuurink RC, Audenaert K. Green leaf volatile production by plants: a meta analysis. New Phytol. 2018;220(3):666–83.
Cristina MS, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol. 2010;61:621–49.
Article
CAS
Google Scholar
Sinha AK, Jaggi M, Raghuram B, Tuteja N. Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav. 2011;6(2):196–203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonaventure G, Baldwin IT. New insights into the early biochemical activation of jasmonic acid biosynthesis in leaves. Plant Signal Behav. 2010;5(3):287–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beckers GJ, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell. 2009;21(3):944–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rushton PJ, Somssich IE, Ringler P, Shen QJ. WRKY transcription factors. Trends Plant Sci. 2010;15(5):247–58.
Article
CAS
PubMed
Google Scholar
Chen L, Song Y, Li S, Zhang L, Zou C, Yu D. The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta (BBA)-Gene Regulatory Mechanisms. 2012;1819(2):120–8.
Article
CAS
Google Scholar
Skibbe M, Qu N, Galis I, Baldwin IT. Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell. 2008;20(7):1984–2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asai N, Nishioka T, Takabayashi J, Furuichi T. Plant volatiles regulate the activities of Ca2+−permeable channels and promote cytoplasmic calcium transients in Arabidopsis leaf cells. Plant Signal Behav. 2009;4(4):294–300.
Article
CAS
PubMed
PubMed Central
Google Scholar