Campoli C, von Korff M. Genetic control of reproductive development in temperate cereals. Adv Bot Res. 2014;72:131–58.
Article
CAS
Google Scholar
Digel B, Pankin A, von Korff M. Global transcriptome profiling of developing leaf and shoot apices reveals distinct genetic and environmental control of floral transition and inflorescence development in barley. Plant Cell. 2015;27:2318–34.
Article
CAS
Google Scholar
Trevaskis B. The central role of the VERNALIZATION1 gene in the VERNALIZATION response of cereals. Funct Plant Biol. 2010;37:479–87.
Article
CAS
Google Scholar
Tao F, Rötter RP, Palosuo T, Díaz-Ambrona CGH, Mínguez MI, Semenov MA, et al. Designing future barley ideotypes using a crop model ensemble. Eur J Agron. 2017;82:144–62.
Article
Google Scholar
Song YH, Kubota A, Kwon MS, Covington MF, Lee N, Taagen ER, et al. Molecular basis of flowering under natural long-day conditions in Arabidopsis. Nat Plants. 2018;4:824–35.
Article
CAS
Google Scholar
Distelfeld A, Li C, Dubcovsky J. Regulation of flowering in temperate cereals. Curr Opin Plant Biol. 2009;12:178–84.
Article
CAS
Google Scholar
Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, et al. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science. 2004;303:1640–4.
Article
CAS
Google Scholar
Karsai I, Szucs P, Mészáros K, Filichkina T, Hayes PM, Skinner JS, et al. The Vrn-H2 locus is a major determinant of flowering time in a facultative x winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet. 2005;110:1458–66.
Article
CAS
Google Scholar
Trevaskis B, Hemming MN, Peacock WJ, Dennis ES. HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol. 2006;140:1397–405.
Article
CAS
Google Scholar
Danyluk J, Kane NA, Breton G, Limin AE, Fowler DB, Sarhan F, et al. TaVRT-1 , a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol. 2003;132:1849–60.
Article
CAS
Google Scholar
Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES. MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci. 2003;100:13099–104.
Article
CAS
Google Scholar
Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci. 2003;100:6263–8.
Article
CAS
Google Scholar
Hemming MN, Fieg S, James Peacock W, Dennis ES, Trevaskis B. Regions associated with repression of the barley (Hordeum vulgare) VERNALIZATION1 gene are not required for cold induction. Mol Gen Genomics. 2009;282:107–17.
Article
CAS
Google Scholar
von Zitzewitz J, Szucs P, Dubcovsky J, Yan L, Francia E, Pecchioni N, et al. Molecular and structural characterization of barley vernalization genes. Plant Mol Biol. 2005;59:449–67.
Article
CAS
Google Scholar
Sasani S, Hemming MN, Oliver SN, Greenup A, Tavakkol-Afshari R, Mahfoozi S, et al. The influence of vernalization and daylength on expression of flowering-time genes in the shoot apex and leaves of barley (Hordeum vulgare). J Exp Bot. 2009;60:2169–78.
Article
CAS
Google Scholar
Oliver SN, Finnegan EJ, Dennis ES, Peacock WJ, Trevaskis B. Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc Natl Acad Sci. 2009;106:8386–91.
Article
CAS
Google Scholar
Bouché F, Woods D, Amasino RM. Winter memory throughout the plant kingdom: different paths to flowering. Plant Physiol. 2017;173:27–35.
Article
Google Scholar
Rizza F, Karsai I, Morcia C, Badeck F-W, Terzi V, Pagani D, et al. Association between the allele compositions of major plant developmental genes and frost tolerance in barley (Hordeum vulgare L.) germplasm of different origin. Mol Breed. 2016;36:156.
Article
Google Scholar
Chen A, Dubcovsky J. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering. PLoS Genet. 2012;8:e1003134.
Article
CAS
Google Scholar
Sharma N, Ruelens P, Dhauw M, Maggen T, Dochy N, Torfs S, et al. A flowering time locus C homolog is a vernalization-regulated repressor in Brachypodium and is cold-regulated in wheat. Plant Physiol. 2017;173:1301–15.
Article
CAS
Google Scholar
Greenup AG, Sasani S, Oliver SN, Talbot MJ, Dennis ES, Hemming MN, et al. ODDSOC2 is a MADS box floral repressor that is down-regulated by vernalization in temperate cereals. Plant Physiol. 2010;153:1062–73.
Article
CAS
Google Scholar
Ruelens P, de Maagd RA, Proost S, Theißen G, Geuten K, Kaufmann K. FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes. Nat Commun. 2013;4:2280.
Article
Google Scholar
Deng W, Casao MC, Wang P, Sato K, Hayes PM, Finnegan EJ, et al. Direct links between the vernalization response and other key traits of cereal crops. Nat Commun. 2015;6:5882.
Article
Google Scholar
Faure S, Higgins J, Turner A, Laurie DA. The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics. 2007;176:599–609.
Article
CAS
Google Scholar
Kikuchi R, Kawahigashi H, Ando T, Tonooka T, Handa H. Molecular and functional characterization of PEBP genes in barley reveal the diversification of their roles in flowering. Plant Physiol. 2009;149:1341–53.
Article
CAS
Google Scholar
Laurie DA, Pratchett N, Snape JW, Bezant JH. RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome. 1995;38:575–85.
Article
CAS
Google Scholar
Casao MC, Igartua E, Karsai I, Lasa JM, Gracia MP, Casas AM. Expression analysis of vernalization and day-length response genes in barley (Hordeum vulgare L.) indicates that VRNH2 is a repressor of PPDH2 (HvFT3) under long days. J Exp Bot. 2011;62:1939–49.
Article
CAS
Google Scholar
Cuesta-Marcos A, Igartua E, Ciudad FJ, Codesal P, Russell JR, Molina-Cano JL, et al. Heading date QTL in a spring × winter barley cross evaluated in Mediterranean environments. Mol Breed. 2008;21:455–71.
Article
Google Scholar
Borràs-Gelonch G, Denti M, Thomas WTB, Romagosa I. Genetic control of pre-heading phases in the Steptoe x Morex barley population under different conditions of photoperiod and temperature. Euphytica. 2012;183:303–21.
Article
Google Scholar
Casao MC, Karsai I, Igartua E, Gracia MP, Veisz O, Casas AM. Adaptation of barley to mild winters: a role for PPDH2. BMC Plant Biol. 2011;11:164.
Article
CAS
Google Scholar
Mulki MA, Bi X, von Korff M. FLOWERING LOCUS T3 controls spikelet initiation but not floral development. Plant Physiol. 2018;178:1170–86.
Article
Google Scholar
Campoli C, Shtaya M, Davis SJ, von Korff M. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs. BMC Plant Biol. 2012;12:97.
Article
CAS
Google Scholar
Turner A, Beales J, Faure S, Dunford RP, Laurie DA. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science. 2005;310:1031–4.
Article
CAS
Google Scholar
Griffiths S, Dunford RP, Coupland G, Laurie DA. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol. 2003;131:1855–67.
Article
CAS
Google Scholar
Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihara Y. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant J. 2003;36:82–93.
Article
CAS
Google Scholar
Li C, Distelfeld A, Comis A, Dubcovsky J. Wheat flowering repressor VRN2 and promoter CO2 compete for interactions with NUCLEAR FACTOR-Y complexes. Plant J. 2011;67:763–73.
Article
CAS
Google Scholar
Cockram J, Thiel T, Steuernagel B, Stein N, Taudien S, Bailey PC, et al. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae. PLoS One. 2012;7:e45307.
Article
CAS
Google Scholar
Higgins JA, Bailey PC, Laurie DA. Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS One. 2010;5:e10065.
Article
Google Scholar
Kikuchi R, Kawahigashi H, Oshima M, Ando T, Handa H. The differential expression of HvCO9, a member of the CONSTANS-like gene family, contributes to the control of flowering under short-day conditions in barley. J Exp Bot. 2012;63:773–84.
Article
CAS
Google Scholar
Igartua E, Casas AM, Ciudad F, Montoya JL, Romagosa I. RFLP markers associated with major genes controlling heading date evaluated in a barley germ plasm pool. Heredity. 1999;83:551–9.
Article
Google Scholar
Mansour E, Moustafa ESA, Qabil N, Abdelsalam A, Wafa HA, El Kenawy A, Casas AM, Igartua E. Assessing different barley growth habits under Egyptian conditions for enhancing resilience to climate change. Field Crops Res. 2018;224:67–75.
Article
Google Scholar
Turner AS, Faure S, Zhang Y, Laurie DA. The effect of day-neutral mutations in barley and wheat on the interaction between photoperiod and vernalization. Theor Appl Genet. 2013;126:2267–77.
Article
CAS
Google Scholar
Woods D, Dong Y, Bouche F, Bednarek R, Rowe M, Ream T, Amasino R. A florigen paralog is required for short-day vernalization in a pooid grass. eLife. 2019;8:e42153.
Article
Google Scholar
Mulki MA, von Korff M. CONSTANS controls floral repression by up-regulating VERNALIZATION2 ( VRN-H2 ) in barley. Plant Physiol. 2016;170:325–37.
Article
CAS
Google Scholar
Karsai I, Meszaros K, Szucs P, Hayes PM, Lang L, Bedo Z. The influence of photoperiod on the Vrn-H2 locus (4H) which is a major determinant of plant development and reproductive fitness traits in a facultative x winter barley (Hordeum vulgare L.) mapping population. Plant Breed. 2006;125:468–72.
Article
CAS
Google Scholar
Chen A, Li C, Hu W, Lau MY, Lin H, Rockwell NC, et al. PHYTOCHROME C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc Natl Acad Sci U S A. 2014;111:10037–44.
Article
CAS
Google Scholar
Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T. Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol. 2015;66:441–64.
Article
CAS
Google Scholar
Gazzani S, Gendall AR, Lister C, Dean C. Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol. 2003;132:1107–14.
Article
CAS
Google Scholar
Michaels SD, He Y, Scortecci KC, Amasino R. Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci U S A. 2003;100:10102–7.
Article
CAS
Google Scholar
Li P, Filiault D, Box MS, Kerdaffrec E, Van Oosterhout C, Wilczek AM, et al. Multiple FLC haplotypes defined by independent cis -regulatory variation underpin life history diversity in Arabidopsis thaliana. Genes Dev. 2014;4:1635–40.
Article
Google Scholar
Whittaker C, Dean C. The FLC locus: a platform for discoveries in epigenetics and adaptation. Annu Rev Cell Dev Biol. 2017;33:555–75.
Article
CAS
Google Scholar
Cuesta-Marcos A, Casas AM, Hayes PM, Gracia MP, Lasa JM, Ciudad F, et al. Yield QTL affected by heading date in Mediterranean grown barley. Plant Breed. 2009;128:46–53.
Article
CAS
Google Scholar
Karsai I, Szucs P, Koszegi B, Hayes PM, Casas AM, Bedo Z, et al. Effects of photo and thermo cycles on flowering time in barley: a genetical phenomics approach. J Exp Bot. 2008;59:2707–15.
Article
CAS
Google Scholar
Francia E, Tondelli A, Rizza F, Badeck FW, Li Destri Nicosia O, Akar T, et al. Determinants of barley grain yield in a wide range of Mediterranean environments. F Crop Res. 2011;120:169–78.
Article
Google Scholar
Tondelli A, Francia E, Visioni A, Comadran J, Mastrangelo AM, Akar T, et al. QTLs for barley yield adaptation to Mediterranean environments in the “Nure” × “Tremois” biparental population. Euphytica. 2014;197:73–86.
Article
Google Scholar
Halliwell J, Borrill P, Gordon A, Kowalczyk R, Pagano ML, Saccomanno B, et al. Systematic investigation of FLOWERING LOCUS T-like poaceae gene families identifies the short-day expressed flowering pathway gene, TaFT3 in wheat (Triticum aestivum L.). Front Plant Sci. 2016;7:1–15.
Article
Google Scholar
Cuesta-Marcos A, Muñoz-Amatrián M, Filichkin T, Karsai I, Trevaskis B, Yasuda S, et al. The relationships between development and low temperature tolerance in barley near isogenic lines differing for flowering behavior. Plant Cell Physiol. 2015;56:2312–24.
Article
CAS
Google Scholar
Lv B, Nitcher R, Han X, Wang S, Ni F, Li K, et al. Characterization of Flowering Locus T1 (FT1) gene in Brachypodium and wheat. PLoS One. 2014;9:e94171.
Article
Google Scholar
Li C, Lin H, Dubcovsky J. Factorial combinations of protein interactions generate a multiplicity of florigen activation complexes in wheat and barley. Plant J. 2015;84:70–82.
Article
CAS
Google Scholar
Zadoks JC, Chang TT, Konzak CF. A decimal code for the growth stages of cereals. Weed Res. 1974;14:415–21.
Article
Google Scholar
Waddington SR, Cartwright PM. A quantitative scale of spike initial and pistil development in barley and wheat. Ann Bot. 1983;51:119–30.
Article
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
Google Scholar
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–33.
Article
CAS
Google Scholar
Mayer KFX, Waugh R, Langridge P, Close TJ, Wise RP, Graner A, et al. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491:711–6.
Article
CAS
Google Scholar
Sato K, Tanaka T, Shigenobu S, Motoi Y, Wu J, Itoh T. Improvement of barley genome annotations by deciphering the Haruna Nijo genome. DNA Res. 2016;23:21–8.
CAS
PubMed
Google Scholar
Dai F, Wang X, Zhang XQ, Chen Z, Nevo E, Jin G, et al. Assembly and analysis of a qingke reference genome demonstrate its close genetic relation to modern cultivated barley. Plant Biotechnol J. 2018;16:760–70.
Article
CAS
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.
Article
CAS
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8.
Article
CAS
Google Scholar
Sebastian A, Contreras-Moreira B. footprintDB: a database of transcription factors with annotated cis elements and binding interfaces. Bioinformatics. 2014;30:258–65.
Article
CAS
Google Scholar
Nguyen NTT, Contreras-Moreira B, Castro-Mondragon JA, Santana-Garcia W, Ossio R, Robles-Espinoza CD, Bahin M, et al. RSAT 2018: regulatory sequence analysis tools 20th anniversary. Nucleic Acids Res. 2018;46:W209–14.
Article
Google Scholar
R Core Team. R: A language and environment for statistical computing. 2017. https://www.r-project.org/. Accessed 21 Mar 2019.
de Mendiburu F. agricolae: Statistical Procedures for Agricultural Research. 2016. https://cran.r-project.org/package=agricolae. Accessed 21 Mar 2019.