Zhao XH, Jiang X, Zhao K, Zhao XH, Yin J, Xie WG. Screening of germplasm with low seed shattering rate and evaluation on agronomic traits in Elymus sibiricus L. (in Chinese with English abstract). J Plant Genetic Resour. 2015;16:691–9 Available from: http://www.zwyczy.cn/ch/reader/view_abstract.aspx?file_no=20141107001.
Dong Y, Wang YZ. Seed shattering: from models to crops. Front plant Sci. 2015;6:476 Available from: http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC4478375&blobtype=pdf.
You MH, Liu JP, Bai SQ, Zhang XQ, Yan JJ. Study on relationship of seed shattering, seed development and yield traits of Elymus sibiricus L (in Chinese with English abstract). Southwest China J Agric Sci. 2011;24:1256–60 Available from: http://www.cnki.com.cn/Article/CJFDTotal-XNYX201104005.htm.
Liu ZJ, Chen Y, Meng J, Dong-Bo WU, Zhou QY, Liu GS. Seed shattering and relevant traits of leymus chinensis(in Chinese with English abstract). Acta Agrestia Sinica. 2013;21(1):152–8 Available from: http://en.cnki.com.cn/Article_en/CJFDTOTAL- CDXU201301027.
Google Scholar
Wijk AJPV. Breeding for improved herbage and seed yield in Selaria sphacelata (Schumack) staph and Hubbard ex Moss. Agricultural Research Reports. 1980;74(74):781–4 Available from: http://edepot.wur.nl/211515.
Google Scholar
Elgersma A, Leeuwangh JE, Wilms HJ. Abscission and seed shattering in perennial ryegrass (Lolium perenne L.). Euphytica. 1988;39:51–7 Available from: https://link.springer.com/article/10.1007%2FBF00043367.
Google Scholar
Zhang ZY, Xie WG, Zhang JC, Zhao XH, Zhao YQ, Wang YR. Phenotype-and SSR-based estimates of genetic variation between and within two important Elymus species in western and northern China. Genes. 2018;9(3):147 Available from: https://www.ncbi.nlm.nih.gov/pubmed/ 29518961.
Article
Google Scholar
Zhao YQ, Zhang JC, Zhao XH, Zhang ZY, Zhang JQ, Wang YR, Xie WG. Assessment of seed shattering and analysis of agronomic traits in Elymus nutans (in Chinese with English abstract). Pratacultural Science. 2017;34:1711–20 Available from: http://www.cnki.com.cn/Article/CJFDTotal-CDXU201301027.htm.
Thurber CS, Hepler PK, Caicedo AL. Timing is everything: early degradation of abscission layer is associated with increased seed shattering in U.S. weedy rice. BMC Plant Biol. 2011;11:1–10 Available from: http://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201708019.htm.
Xie WG, Zhang JC, Zhao XH, Zhang ZY, Wang YR. Transcriptome profiling of Elymus sibiricus, an important forage grass in Qinghai-Tibet plateau, reveals novel insights into candidate genes that potentially connected to seed shattering. BMC Plant Biol. 2017;17:78 Available from: https://www.ncbi.nlm.nih.gov/pubmed/28431567.
Article
Google Scholar
Zhao XH, Xie WG, Zhang JC, Zhang ZY, Wang YR. Histological characteristics, cell wall hydrolytic enzymes activity and candidate genes expression associated with seed shattering of Elymus sibiricus accessions. Front Plant Sci. 2017; 8:606. Available from: http://pdfs.semanticscholar.org/9ab2/b50da7a800726debe252c73cb8cc95f9bca8.pdf.
Onishi KO, Takagi KT, Kontani MK, Tanaka T, Sano Y. Different patterns of genealogical relationships found in the two major QTLs causing reduction of seed shattering during rice domestication. Genome. 2007;50:757–66 Available from: http://www.nrcresearchpress.com/doi/abs/10.1139/G07-051.
Li C, Zhou A, Sang T. Rice domestication by reducing shattering. Science. 2006;311:1936–9 Available from: https://www.ncbi.nlm.nih.gov/pubmed/16527928.
Article
CAS
Google Scholar
Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M. An SNP Caused loss of seed shattering during rice domestication. Science. 2006;312:1392–1396. Available from: http://science.sciencemag.org/content/312/5778/1392.
Ji H, Kim SR, Kim YH, Kim H, Eun MY, Jin ID, et al. Inactivation of the CTD phosphatase-like gene OsCPL1 enhances the development of the abscission layer and seed shattering in rice. Plant J. 2010;61:96–106. Available from: https: //www.ncbi.nlm.nih.gov/pubmed/19807881.
Zhou Y, Lu D, Li C, Luo J, Zhu BF, Zhu J, et al. Genetic control of seed shattering in rice by the APETALA2 transcription factor shattering abortion1. Plant cell. 2012;24:1034–48 Available from: https://www.ncbi.nlm.nih.gov/pubmed/22408071.
Article
CAS
Google Scholar
Yoon J, Cho LH, Kim SL, Choi HB, Koh HJ, An G. BEL1-type homeobox gene SH5 induces seed shattering by enhancing abscission zone development and inhibiting lignin biosynthesis. Plant J. 2014;79(5):717–28 Available from: https://www.ncbi.nlm.nih.gov/pubmed/24923192.
Article
CAS
Google Scholar
Zhang MQ, Zhang JY, Liu ZP, Wang YR, Zhang L. Cloning and analysis of the MADS-box gene WM8 of Elymus nutans (in Chinese with English abstract). Acta Pratac Sin. 2015;21:141–50 Available from: http://en.cnki.com.cn/Article_en/CJFDTOTAL-CYXB201204018.htm.
Simons KJ, Fellers JP, Trick HN, Zhang ZC, Tai YS, Gill BS, Faris JD. Molecular characterization of the major wheat domestication gene Q. Genetics. 2006;172:547–55 Available from: https://www.ncbi.nlm.nih.gov/pubmed/16172507.
Article
CAS
Google Scholar
Lin ZW, Li XR, Shannon LM, Yeh CT, Wang ML, Bai GH, et al. Parallel domestication of the Shattering1 genes in cereals. Nature Genet. 2012;44:720–4 Available from: https://www.ncbi.nlm.nih.gov/pubmed/22581231.
Article
CAS
Google Scholar
Larson SR, Kellogg EA. Genetic dissection of seed production traits and Identifi cation of a major-effect seed retention QTL in hybrid Leymus (Triticeae) Wildryes. Crop Sci. 2009;49:29–40 Available from: https://dl.sciencesocieties.org/publications/cs/abstracts/49/1/29.
Article
CAS
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol. 2011;29:644–52 Available from: https://www.ncbi.nlm.nih.gov/pubmed/21572440.
Article
CAS
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6 Available from: https://www.ncbi.nlm.nih.gov/pubmed/16081474.
Article
CAS
Google Scholar
Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 2006;34:293–7 Available from: https://www.ncbi.nlm.nih.gov/pubmed/16845012.
Article
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat methods. 2008;5:621–8 Available from: https://www.ncbi.nlm.nih.gov/pubmed/18516045.
Article
CAS
Google Scholar
Storey JD. A direct approach to false discovery rates. J R Stat Soc B. 2002;64:479–98 Available from: https://www.jstor.org/stable/3088784.
Article
Google Scholar
Ernst J, Barjoseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC bioinformatics. 2006;7:191 Available from: https://www.ncbi.nlm.nih.gov/pubmed/16597342.
Article
Google Scholar
Du Z, Zhou X, Ling Y, Zhang ZH, Su Z. Agrigo: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38:6470 Available from: https://www.ncbi.nlm.nih.gov/pubmed/20435677.
Article
Google Scholar
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathway s and diseases. Nucleic Acids Res. 2011;39:316–22 Available from: https://www.ncbi.nlm.nih.gov/pubmed/21715386.
Article
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods. 2001;25:402–8 Available from: https://www.ncbi.nlm.nih.gov/pubmed/11846609.
Article
CAS
Google Scholar
Shan Z, Wu HL, Li CL, Chen H, Wu Q. Improved SDS method for general plant genomic DNA extraction (in Chinese with English abstract). Guangdong Agricultural Sciences. 2001;38:113–5 Available from: http://www.cnki.com.cn/Article/CJFDTotal-GDNY201108048.htm.
Yeh FC, Boyle TJB. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot. 1997;129:157.
Google Scholar
Rohlf FJ.NTSYS: numerical taxonomy and multivariate analysis system version 2.1. Exeter Publishing, Setauket; 2000. Availablefrom: http://www.exetersoftware.com/cat/ntsyspc/ntsyspc.html.
Sexton R, Durbin ML, Lewis LN, Thomson WW. Use of cellulase antibodies to study leaf abscission. Nature. 1980;283:873–4 Available from: https://www.researchgate.net/publication/232787760.
Article
Google Scholar
Agrawal AP, Basarkar PW, Salimath PM, Patil SA. Role of cell wall-degrading enzymes in pod-shattering process of soybean, Glycine max (L.) Merrill. Curr Sci. 2002;82:58–61 Available from: http://www.iisc.ernet.in/currsci/jan102002/58.pdf.
CAS
Google Scholar
Robert JA, Elliott KA, Gonzalez-Carranza ZH. Abscission, dehiscence, and other cell separation process. Annu rev plant biol. 2002;53:131–158. Available from: https://www.ncbi.nlm.nih.gov/pubmed/12221970.
Zhou HL, He SJ, Cao YR, Chen T, Du BX, Chu CC, et al. OsGLU1, a putative membrane-bound endo-1, 4-ß-d -glucanase from rice, affects plant internode elongation. Plant Mol Biol. 2006;60:137–51 Available from: https://www.ncbi.nlm.nih.gov/pubmed/16463105.
Article
CAS
Google Scholar
Kalaitzis P, Solomos T, Tucker ML. Three different polygalacturonases are expressed in tomato leaf and flower abscission, each with a different temporal expression pattern. Plant Physiol. 1997;113(4):1303–8 Available from: https://www.ncbi.nlm.nih.gov/pubmed/9112778.
Article
CAS
Google Scholar
Jiang CZ, Lu F, Imsabai W, Meir S, Reid MS. Silencing polygalacturonase expression inhibits tomato petiole abscission. J Exp Bot. 2008;59(4):973–9 Available from: https://www.ncbi.nlm.nih.gov/pubmed/?term=Silencing+polygalacturonase+expression+inhibits+tomato+petiole+abscission.
Meir S, Philosoph-Hadas S, Sundaresan S, Selvaraj KS, Burd S, Ophir R, et al. Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. Plant Physiol. 2010;154:1929–56 Available from: https://www.ncbi.nlm.nih.gov/pubmed/20947671.
Article
CAS
Google Scholar
Agusti J, Merelo P, Cercos M, Tadeo FR, Talon M. Ethylene-induced differential gene expression during abscission of citrus leaves. J Exp bot. 2008;59(10):2717–33 Available from: https://www.ncbi.nlm.nih.gov/pubmed/18515267.
Article
CAS
Google Scholar
Singh AP, Pandey SP, Pandey RS, Nath P, Sane AP. Transcriptional activation of a pectate lyase gene, rbpel1, during petal abscission in rose. Postharvestvest biol Tec. 2011;60(2):143–8 Available from: https://doi.org/10.1016/j.postharvbio.2010.12.014.
Article
CAS
Google Scholar
Sun L, Van NS. Analysis of promoter activity of members of the PECTATE LYASE-LIKE (PLL) gene family in cell separation in Arabidopsis. BMC Plant biol. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20649977.
Sargent JA, Osborne DJ, Dunford SM. Cell separation and its hormonal control during fruit abscission in the Gramineae. J Exp Bot. 1984;35(160):1663–74 Available from: https://www.researchgate.net/publication/297182815.
CAS
Google Scholar
Sexton R, Roberts JA. Cell biology of abscission. Annu Rev Plant Biol. 2003;33(33):133–62 Available from: https://www.annualreviews.org/doi/pdf/10.1146/annurev.pp.33.060182.001025.
Google Scholar
Schaller GE, Bleecker AB. Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science. 1995;270(5243):1809–11 Available from: https://www.ncbi.nlm.nih.gov/pubmed/8525372.
Article
CAS
Google Scholar
Sohal SK, Rup PJ, Arora GK. Influence of cytokinine, a plant growth regulator (PGR) on the activity of some enzymes involved in metabolism, in the nymphs of Lipaphis erysimi (Kalt.). J Environ Biol. 2006;27(2):217–20 Available from: http://jeb.co.in/journal_issues/200604_apr06/paper_10.pdf.
CAS
Google Scholar
Roberts JA, Gonzalezcarranza ZH. Pectinase functions in abscission. Stewart Postharvest Review. 2009;5:1–4 Available from: https://www.researchgate.net/publication/233587756.
Google Scholar
Taylor JE, Whitelaw CA. Signals in abscission. New Phytol. 2001;151:323–39 Available from: http://onlinelibrary.wiley.com/doi/10.1046/j.0028-646x.2001.00194.x/full.
Article
CAS
Google Scholar
Shelest E. Transcription factors in fungi. Fems Microbiol Lett. 2008;286(2):145–51 Available from: https://doi.org/10.1111/j.1574-6968.2008.01293.x.
Article
CAS
Google Scholar
Gil-Amado JA, Gomez-Jimenez MC. Transcriptome analysis of mature fruit abscission control in olive. Plant cell Physiol. 2013;54:244–69 Available from: https://www.ncbi.nlm.nih.gov/pubmed/23292600.
Article
CAS
Google Scholar
Hossain MA, Cho JI, Han M, Ahn CH, Jeon JS, An G, et al. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and aba signaling in rice. J Plant Physiol. 2010;167(17):1512–20 Available from: https://www.sciencedirect.com/science/article/pii/S0176161710002348?via%3Dihub.
Article
CAS
Google Scholar
Xiang Y, Tang N, Du H, Ye H, Xiong L. Characterization of OsbZIP23 as a key player of basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol. 2008;148:1938–52 Available from: https://minimanuscript.com/fr/manuscripts/characterization-of-osbzip23-as-a-key-pla.pdf.
Article
CAS
Google Scholar
Tucker ML, Whitelaw CA, Lyssenko NN, Nath P. Functional analysis of regulatory elements in the gene promoter for an abscission-specific cellulase from bean and isolation, expression, and binding affinity of three TGA-type basic leucine zipper transcription factors. Plant Physiol. 2002;130(3):1487–96 Available from: http://www.plantphysiol.org/content/plantphysiol/130/3/1487.full.pdf.
Article
CAS
Google Scholar
Luo X, Mao H, Wei Y, Cai J, Xie C, Sui A, Yang X, Dong J. The fungal-specific transcription factor vdpf influences conidia production, melanized microsclerotia formation, and pathogenicity in verticillium dahliae. Mol plant Pathol. 2016;17(9):1364–81 Available from: https://www.ncbi.nlm.nih.gov/pubmed/26857810.
Article
CAS
Google Scholar
Yangrae C, Ohm RA, Grigoriev IV, Akhil S. Fungal-specific transcription factor AbPf2 activates pathogenicity in Alternaria brassicicola. Plant J. 2013;75(3):498–514 Available from: https://www.ncbi.nlm.nih.gov/pubmed/23617599.
Article
Google Scholar
Collard BCY, Mackill DJ. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos T R Soc B. 2008;363:557–72 Available from: http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC2610170&blobtype=pdf.
Dutta S, Kumawat G, Singh BP, Gupta DK, Singh S, Dogra V, et al. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [ Cajanus cajan (L.) Millspaugh]. BMC Plant Biol. 2011;11:17. https://doi.org/10.1186/1471-2229-11-17 Available from: https://www.ncbi.nlm.nih.gov/pubmed/21251263.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao Y, Zhou LX, Xia W, Mason AS, Yang YD, Ma ZL, et al. Exploiting transcriptome data for the development and characterization of gene-based ssr markers related to cold tolerance in oil palm ( Elaeis guineensis ). BMC Plant Biol. 2014;14:384. https://doi.org/10.1186/s12870-014-0384-2 Available from: hhttps://www.ncbi.nlm.nih.gov/pubmed/25522814.
Tranbarger TJ, Kluabmongkol W, Sangsrakru D, Morcillo F, Tregear JW, Tragoonrung S, Billotte N. SSR markers in transcripts of genes linked to post-transcriptional and transcriptional regulatory functions during vegetative and reproductive development of Elaeis guineensis. BMC Plant Biol. 2012;12:1 Available from: https://www.ncbi.nlm.nih.gov/pubmed/22214433.
Article
CAS
Google Scholar
Molla KA, Debnath AB, Ganie SA, Mondal TK. Identification and analysis of novel salt responsive candidate gene based SSRs (cgSSRs) from rice (Oryza sativa L.). BMC Plant biol. 2015;15(1):122 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4435636/.