Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T, Seto Y, Yamaguchi S, Akiyama K, Yoneyama K, Nomura T. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci U S A. 2014;111(50):18084–9. https://doi.org/10.1073/pnas.1410801111.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ahrazem O, Gomez-Gomez L, Rodrigo MJ, Avalos J, Limon MC. Carotenoid cleavage Oxygenases from microbes and photosynthetic organisms: features and functions. Int J Mol Sci. 2016;17(11):1781. https://doi.org/10.3390/ijms17111781.
Article
PubMed Central
CAS
Google Scholar
Al-Babili S, Bouwmeester HJ. Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol. 2015;66:161–86. https://doi.org/10.1146/annurev-arplant-043014-114759.
Article
PubMed
CAS
Google Scholar
Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S. The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science. 2012;335(6074):1348–51. https://doi.org/10.1126/science.1218094.
Article
PubMed
CAS
Google Scholar
Ali Z, Mahas A, Mahfouz M. CRISPR/Cas13 as a tool for RNA interference. Trends Plant Sci. 2018;23(5):374–8. https://doi.org/10.1016/j.tplants.2018.03.003.
Article
PubMed
CAS
Google Scholar
Aman R, Ali Z, Butt H, Mahas A, Aljedaani F, Khan MZ, Ding S, Mahfouz M. RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol. 2018;19(1):1. https://doi.org/10.1186/s13059-017-1381-1.
Article
PubMed
PubMed Central
Google Scholar
Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014;30(10):1473–5. https://doi.org/10.1093/bioinformatics/btu048.
Article
PubMed
PubMed Central
CAS
Google Scholar
Baz L, Mori N, Mi J, Jamil M, Kountche BA, Guo X, Balakrishna A, Jia KP, Vermathen M, Akiyama K, Al-Babili S. 3-Hydroxycarlactone, a novel product of the Strigolactone biosynthesis Core pathway. Mol Plant. 20182052(18):30215-6. https://doi.org/10.1016/j.molp.2018.06.008.
Bonfante P, Genre A. Arbuscular mycorrhizal dialogues: do you speak ‘plantish’ or ‘fungish’? Trends Plant Sci. 2015;20(3):150–4. https://doi.org/10.1016/j.tplants.2014.12.002.
Article
PubMed
CAS
Google Scholar
Brewer PB, Yoneyama K, Filardo F, Meyers E, Scaffidi A, Frickey T, Akiyama K, Seto Y, Dun EA, Cremer JE, Kerr SC, Waters MT, Flematti GR, Mason MG, Weiller G, Yamaguchi S, Nomura T, Smith SM, Yoneyama K, Beveridge CA. LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A. 2016;113(22):6301–6. https://doi.org/10.1073/pnas.1601729113.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bruno M, Al-Babili S. On the substrate specificity of the rice strigolactone biosynthesis enzyme DWARF27. Planta. 2016;243(6):1429–40. https://doi.org/10.1007/s00425-016-2487-5.
Article
PubMed
CAS
Google Scholar
Bruno M, Hofmann M, Vermathen M, Alder A, Beyer P, Al-Babili S. On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7. FEBS Lett. 2014;588(9):1802–7. https://doi.org/10.1016/j.febslet.2014.03.041.
Article
PubMed
CAS
Google Scholar
Bruno M, Vermathen M, Alder A, Wust F, Schaub P, van der Steen R, Beyer P, Ghisla S, Al-Babili S. Insights into the formation of carlactone from in-depth analysis of the CCD8-catalyzed reactions. FEBS Lett. 2017;591(5):792–800. https://doi.org/10.1002/1873-3468.12593.
Article
PubMed
CAS
Google Scholar
Butt H, Eid A, Ali Z, Atia MAM, Mokhtar MM, Hassan N, Lee CM, Bao G, Mahfouz MM. Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide RNA molecule. Front Plant Sci. 2017;8:1441. https://doi.org/10.3389/fpls.2017.01441.
Article
PubMed
PubMed Central
Google Scholar
Conn CE, Bythell-Douglas R, Neumann D, Yoshida S, Whittington B, Westwood JH, Shirasu K, Bond CS, Dyer KA, Nelson DC. PLANT EVOLUTION. Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science. 2015;349(6247):540–3. https://doi.org/10.1126/science.aab1140.
Article
PubMed
CAS
Google Scholar
de Saint GA, Clave G, Badet-Denisot MA, Pillot JP, Cornu D, Le Caer JP, Burger M, Pelissier F, Retailleau P, Turnbull C, Bonhomme S, Chory J, Rameau C, Boyer FD. An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nat Chem Biol. 2016;12(10):787–94. https://doi.org/10.1038/nchembio.2147.
Article
CAS
Google Scholar
Decker EL, Alder A, Hunn S, Ferguson J, Lehtonen MT, Scheler B, Kerres KL, Wiedemann G, Safavi-Rizi V, Nordzieke S, Balakrishna A, Baz L, Avalos J, Valkonen JPT, Reski R, Al-Babili S. Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens. New Phytol. 2017;216(2):455–68. https://doi.org/10.1111/nph.14506.
Article
PubMed
CAS
Google Scholar
Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. https://doi.org/10.1126/science.1258096.
Article
PubMed
CAS
Google Scholar
Eid A, Alshareef S, Mahfouz MM. CRISPR base editors: genome editing without double-stranded breaks. Biochem J. 2018;475(11):1955–64. https://doi.org/10.1042/BCJ20170793.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eid A, Mahfouz MM. Genome editing: the road of CRISPR/Cas9 from bench to clinic. Exp Mol Med. 2016;48(10):e265. https://doi.org/10.1038/emm.2016.111.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF. Strigolactone inhibition of shoot branching. Nature. 2008;455(7210):189–94. https://doi.org/10.1038/nature07271.
Article
PubMed
CAS
Google Scholar
Gutjahr C, Paszkowski U. Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Front Plant Sci. 2013;4:204. https://doi.org/10.3389/fpls.2013.00204.
Article
PubMed
PubMed Central
Google Scholar
Ha CV, Leyva-Gonzalez MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran LS. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci U S A. 2014;111(2):851–6. https://doi.org/10.1073/pnas.1322135111.
Article
PubMed
CAS
Google Scholar
Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC. DAD2 is an alpha/beta hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol. 2012;22(21):2032–6. https://doi.org/10.1016/j.cub.2012.08.007.
Article
PubMed
CAS
Google Scholar
Hoagland DR, Arnon DI. The water culture method for growing plants without soil. Agricultural Experiment Station, University of California, Berkeley. Circular. 1950;347:1–32.
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262–78. https://doi.org/10.1016/j.cell.2014.05.010.
Article
PubMed
PubMed Central
CAS
Google Scholar
Iseki M, Shida K, Kuwabara K, Wakabayashi T, Mizutani M, Takikawa H, Sugimoto Y. Evidence for species-dependent biosynthetic pathways for converting carlactone to strigolactones in plants. J Exp Bot. 2018;69(9):2305–18. https://doi.org/10.1093/jxb/erx428.
Article
PubMed
Google Scholar
Jia KP, Baz L, Al-Babili S. From carotenoids to strigolactones. J Exp Bot. 2018;69(9):2189–2204. https://doi.org/10.1093/jxb/erx476.
Article
PubMed
Google Scholar
Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu HE, Wang Y, Li J. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature. 2013;504(7480):401–5. https://doi.org/10.1038/nature12870.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet. 2014;15(5):321–34. https://doi.org/10.1038/nrg3686.
Article
PubMed
CAS
Google Scholar
Kloer DP, Ruch S, Al-Babili S, Beyer P, Schulz GE. The structure of a retinal-forming carotenoid oxygenase. Science. 2005;308(5719):267–9. https://doi.org/10.1126/science.1108965.
Article
PubMed
CAS
Google Scholar
Kulkarni KP, Vishwakarma C, Sahoo SP, Lima JM, Nath M, Dokku P, Gacche RN, Mohapatra T, Robin S, Sarla N, Seshashayee M, Singh AK, Singh K, Singh NK, Sharma RP. A substitution mutation in OsCCD7 cosegregates with dwarf and increased tillering phenotype in rice. J Genet. 2014;93(2):389–401.
Article
PubMed
CAS
Google Scholar
Lopez-Raez JA, Matusova R, Cardoso C, Jamil M, Charnikhova T, Kohlen W, Ruyter-Spira C, Verstappen F, Bouwmeester H. Strigolactones: ecological significance and use as a target for parasitic plant control. Pest Manag Sci. 2009;65(5):471–7. https://doi.org/10.1002/ps.1692.
Article
PubMed
CAS
Google Scholar
Mahas A, Neal Stewart C Jr, Mahfouz MM. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation. Biotechnol Adv. 2018;36(1):295–310. https://doi.org/10.1016/j.biotechadv.2017.11.008.
Article
PubMed
CAS
Google Scholar
Moshelion M, Altman A. Current challenges and future perspectives of plant and agricultural biotechnology. Trends Biotechnol. 2015;33(6):337–42. https://doi.org/10.1016/j.tibtech.2015.03.001.
Article
PubMed
CAS
Google Scholar
Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473–97.
Article
CAS
Google Scholar
Parker C. Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag Sci. 2009;65(5):453–9. https://doi.org/10.1002/ps.1713.
Article
PubMed
CAS
Google Scholar
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380–9. https://doi.org/10.1016/j.cell.2013.08.021.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H. The biology of strigolactones. Trends Plant Sci. 2013;18(2):72–83. https://doi.org/10.1016/j.tplants.2012.10.003.
Article
PubMed
CAS
Google Scholar
Sakamoto T, Matsuoka M. Generating high-yielding varieties by genetic manipulation of plant architecture. Curr Opin Biotechnol. 2004;15(2):144–7. https://doi.org/10.1016/j.copbio.2004.02.003.
Article
PubMed
CAS
Google Scholar
Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32(4):347–55. https://doi.org/10.1038/nbt.2842.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schiml S, Puchta H. Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. Plant Methods. 2016;12:8. doi:ARTN 8. https://doi.org/10.1186/s13007-016-0103-0.
Article
PubMed
PubMed Central
CAS
Google Scholar
Seto Y, Yamaguchi S. Strigolactone biosynthesis and perception. Curr Opin Plant Biol. 2014;21:1–6. https://doi.org/10.1016/j.pbi.2014.06.001.
Article
PubMed
CAS
Google Scholar
Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, Leyser O, Nelson DC. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to Strigolactones and Karrikins in Arabidopsis. Plant Cell. 2015;27(11):3143–59. https://doi.org/10.1105/tpc.15.00562.
Article
PubMed
PubMed Central
CAS
Google Scholar
Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet. 2011;45:247–71. https://doi.org/10.1146/annurev-genet-110410-132435.
Article
PubMed
CAS
Google Scholar
Torres-Vera R, Garcia JM, Pozo MJ, Lopez-Raez JA. Do strigolactones contribute to plant defence? Mol Plant Pathol. 2014;15(2):211–6. https://doi.org/10.1111/mpp.12074.
Article
PubMed
CAS
Google Scholar
Tsuchiya Y, Yoshimura M, Hagihara S. The dynamics of strigolactone perception in Striga hermonthica: a working hypothesis. J Exp Bot. 2018;69(9):2281–90. https://doi.org/10.1093/jxb/ery061.
Article
PubMed
Google Scholar
Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones. Nature. 2008;455(7210):195–200. https://doi.org/10.1038/nature07272.
Article
PubMed
CAS
Google Scholar
Voytas DF, Gao C. Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol. 2014;12(6):e1001877. https://doi.org/10.1371/journal.pbio.1001877.
Article
PubMed
PubMed Central
Google Scholar
Waldie T, McCulloch H, Leyser O. Strigolactones and the control of plant development: lessons from shoot branching. Plant J. 2014;79(4):607–22. https://doi.org/10.1111/tpj.12488.
Article
PubMed
CAS
Google Scholar
Waters MT, Gutjahr C, Bennett T, Nelson DC. Strigolactone signaling and evolution. Annu Rev Plant Biol. 2017;68:291–322. https://doi.org/10.1146/annurev-arplant-042916-040925.
Article
PubMed
CAS
Google Scholar
White MD, Flashman E. Catalytic strategies of the non-heme iron dependent oxygenases and their roles in plant biology. Curr Opin Chem Biol. 2016;31:126–35. https://doi.org/10.1016/j.cbpa.2016.02.017.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xie X, Yoneyama K, Yoneyama K. The strigolactone story. Annu Rev Phytopathol. 2010;48:93–117. https://doi.org/10.1146/annurev-phyto-073009-114453.
Article
PubMed
CAS
Google Scholar
Yang X, Chen L, He J, Yu W. Knocking out of carotenoid catabolic genes in rice fails to boost carotenoid accumulation, but reveals a mutation in strigolactone biosynthesis. Plant Cell Rep. 2017;36(10):1533–45. https://doi.org/10.1007/s00299-017-2172-6.
Article
PubMed
CAS
Google Scholar
Yao R, Ming Z, Yan L, Li S, Wang F, Ma S, Yu C, Yang M, Chen L, Chen L, Li Y, Yan C, Miao D, Sun Z, Yan J, Sun Y, Wang L, Chu J, Fan S, He W, Deng H, Nan F, Li J, Rao Z, Lou Z, Xie D. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature. 2016;536(7617):469–73. https://doi.org/10.1038/nature19073.
Article
PubMed
CAS
Google Scholar
Zhang B, Tian F, Tan L, Xie D, Sun C. Characterization of a novel high-tillering dwarf 3 mutant in rice. J Genet Genomics. 2011;38(9):411–8. https://doi.org/10.1016/j.jgg.2011.08.002.
Article
PubMed
CAS
Google Scholar
Zhang Y, van Dijk AD, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, Smith SM, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester HJ. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol. 2014;10(12):1028–33. https://doi.org/10.1038/nchembio.1660.
Article
PubMed
CAS
Google Scholar
Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Wang J, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J. D14-SCF (D3)-dependent degradation of D53 regulates strigolactone signalling. Nature. 2013;504(7480):406–10. https://doi.org/10.1038/nature12878.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J. 2006;48(5):687–98. https://doi.org/10.1111/j.1365-313X.2006.02916.x.
Article
PubMed
CAS
Google Scholar