Leonova IN. Molecular markers: implementation in crop plant breeding for identification, introgression, and gene pyramiding. Vavilov. J Genet Breed. 2013;17:314–25.
Google Scholar
Pradhan SK, Nayak DK, Mohanty S, Behera L, Barik SR, Pandit E, Lenka S, Anandan A. Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna. Rice. 2015;8:19.
Article
PubMed Central
Google Scholar
Shao ZQ, Wang B, Chen JQ. Tracking ancestral lineages and recent expansions of NBS-LRR genes in angiosperms. Plant Signal Behav. 2016;11(7):e1197470.
Article
PubMed
PubMed Central
Google Scholar
Liu W, Ghouri F, Yu H, Li X, Yu S, Shahid MQ, Liu X. Genome wide re-sequencing of newly developed Rice lines from common wild rice (Oryza rufipogon Griff.) for the identification of NBS-LRR genes. PLoS One. 2017;12(7):e0180662.
Article
PubMed
PubMed Central
Google Scholar
Zhou P, Silverstein KA, Ramaraj T, Guhlin J, Denny R, Liu J, Farmer AD, Steele KP, Stupar RM, Miller JR, Tiffin P, Mudge J, Young ND. Exploring structural variation and gene family architecture with de novo assemblies of 15 Medicago genomes. BMC Genomics. 2017;18(1):261.
Article
PubMed
PubMed Central
Google Scholar
Song H, Wang P, Li C, Han S, Zhao C, Xia H, Bi Y, Guo B, Zhang X, Wang X. Comparative analysis of NBS-LRR genes and their response to Aspergillus flavus in Arachis. PLoS One. 2017;12(2):e0171181.
Article
PubMed
PubMed Central
Google Scholar
Quirin EA, Mann H, Meyer RS, Traini A, Chiusano ML, Litt A, Bradeen JM. Evolutionary meta-analysis of Solanaceous resistance gene and Solanum resistance gene analog sequences and a practical framework for cross-species comparisons. Mol Plant-Microbe Interact. 2012;25(5):603–12.
Article
CAS
PubMed
Google Scholar
Morata J, Puigdomènech P. Variability among Cucurbitaceae species (melon, cucumber and watermelon) in a genomic region containing a cluster of NBS-LRR genes. BMC Genomics. 2017;18(1):138.
Article
PubMed
PubMed Central
Google Scholar
Cantalapiedra CP, Contreras-Moreira B, Silvar C, Perovic D, Ordon F, Gracia MP, Igartua E, Casas AM. A cluster of nucleotide-binding site-leucine-rich repeat genes resides in a barley powdery mildew resistance quantitative trait loci on 7HL. Plant Genome. 2016;9(2). doi:10.3835/plantgenome2015.10.0101.
Sekhwal MK, Li P, Lam I, Wang X, Cloutier S, You FM. Disease resistance gene analogs (RGAs) in plants. Int J Mol Sci. 2015;16(8):19248–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sagi MS, Deokar AA, Tar’an B. Genetic analysis of NBS-LRR gene family in chickpea and their expression profiles in response to Ascochyta blight infection. Front Plant Sci. 2017;8:838.
Article
PubMed
PubMed Central
Google Scholar
Martin T, Rönnberg-Wästljung AC, Stenlid J, Samils B. Identification of a differentially expressed TIR-NBS-LRR gene in a major QTL associated to leaf rust resistance in Salix. PLoS One. 2016;11(12):e0168776.
Article
PubMed
PubMed Central
Google Scholar
Li R, Rashotte AM, Singh NK, Lawrence KS, Weaver DB, Locy RD. Transcriptome analysis of cotton (Gossypium hirsutum L.) genotypes that are susceptible, resistant, and hypersensitive to reniform nematode (Rotylenchulus reniformis). PLoS One. 2015;10:e0143261.
Article
PubMed
PubMed Central
Google Scholar
Clevenger J, Chu Y, Arrais Guimaraes L, Maia T, Bertioli D, Leal-Bertioli S, Timper P, Holbrook CC, Ozias-Akins P. Gene expression profiling describes the genetic regulation of Meloidogyne arenaria resistance in Arachis hypogaea and reveals a candidate gene for resistance. Sci Rep. 2017;7:1317.
Article
PubMed
PubMed Central
Google Scholar
Vleeshouwers VGAA, Oliver R. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Mol Plant Pathogen Inter. 2014;27:196–206.
CAS
Google Scholar
Brendolise C, Montefiori M, Dinis R, Peeters N, Storey RD, Rikkerink EHA. Novel hairpin library-based approach to identify NBS-LRR genes required for effector-triggered hypersensitive response in Nicotiana benthamiana. Plant Methods. 2017;13:32.
Article
PubMed
PubMed Central
Google Scholar
Tran PT, Choi H, Kim SB, Lee HA, Choi D, Kim KH. A simple method for screening of plant NBS-LRR genes that confer a hypersensitive response to plant viruses and its application for screening candidate pepper genes against pepper mottle virus. J Virol Methods. 2014;201:57–64.
Article
CAS
PubMed
Google Scholar
Zhang C, Chen H, Cai T, Deng Y, Zhuang R, Zhang N, Zeng Y, Zheng Y, Tang R, Pan R, Zhuang W. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Biotechnol J. 2017;15(1):39–55.
Article
CAS
PubMed
Google Scholar
Wei C, Chen J, Kuang H. Dramatic number variation of R genes in Solanaceae species accounted for by a few R gene subfamilies. PLoS One. 2016;11(2):e0148708.
Article
PubMed
PubMed Central
Google Scholar
Qian LH, Zhou GC, Sun XQ, Lei Z, Zhang YM, Xue JY, Hang YY. Distinct patterns of gene gain and loss: diverse evolutionary modes of NBS-encoding genes in three Solanaceae crop species. G3 (Bethesda). 2017;7(5):1577–85.
Article
Google Scholar
Lozano R, Ponce O, Ramirez M, Mostajo N, Orjeda G. Genome-wide identification and mapping of NBS-encoding resistance genes in Solanum tuberosum group phureja. PLoS One. 2012;7(4):e34775.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Weng Q, Song J, Ma H, Yuan J, Dong Z, Liu Y. Bioinformatics analysis of NBS-LRR encoding resistance genes in Setaria italica. Biochem Genet. 2016;54(3):232–48.
Article
CAS
PubMed
Google Scholar
Pal T, Jaiswal V, Chauhan RSDRPPP. A machine learning based tool for prediction of disease resistance proteins in plants. Comput Biol Med. 2016;78:42–8.
Article
CAS
PubMed
Google Scholar
Khiutti A, Afanasenko O, Antonova O, Shuvalov O, Novikova L, Krylova E, Chalaya N, Mironenko N, Spooner DM, Gavrilenko T. Characterization of resistance to Synchytrium endobioticum in cultivated potato accessions from the collection of Vavilov Institute of Plant Industry (VIR) collection. Plant Breed. 2012;131:744–50.
Article
Google Scholar
Limantseva L, Mironenko N, Shuvalov O, Antonova O, Khiutti A, Novikova L, Afanasenko O, Spooner D, Gavrilenko T. Characterization of resistance to Globodera rostochiensis pathotype Ro1 in cultivated and wild potato species accessions from the Vavilov Institute of Plant Industry. Plant Breed. 2014;133:660–5.
Article
CAS
Google Scholar
Hockland S, Niere B, Grenier E, Blok V, Phillips M, den Nijs L, Anthoine G, Pickup J, Viaene N. An evaluation of the implications of virulence in non-European populations of Globodera pallida and G. rostochiensis for potato cultivation in Europe. Nematology. 2012;14:1–13.
Article
Google Scholar
Evans K, Trudgill DL. Pest aspects of potato production. Part 1. The nematode pests of potatoes. In: Harris P, editor. The potato crop. London: Chapman & Hall; 1992. ISBN 0 412 29640 3.
Google Scholar
Gus’kova LA, Bolezni, vyzyvaemye nematodami (nematodozy). Bolezni kul’turnykh rastenii (Diseases caused by nematodes (nematoses) Diseases of cultivated plants), St. Petersburg. 2005, pp. 204–215.
Friedman W. Pests not known to occur in the United States or of limited distribution, No. 68: Golden Nematode. United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine. 10 pp. 1985.
Winslow RD, Willis RJ. Nematode diseases of potatoes. II. Potato cyst nematode, Heterodera rostochiensis. In: Webster J, editor. Economic Nematology. New York: Acad. Press; 1972. p. 18–34.
Google Scholar
Trudgill DL, Elliot MJ, Evans K, Phillips MS. The white potato cyst nematode (Globodera pallida) – a critical analysis of the threat in Britain. Ann Appl Biol. 2003;143:73–80.
Article
Google Scholar
Catalogue of pesticides and agro-chemicals, used in the territory of the Russian Federation. 2017. https://www.agroxxi.ru/upload/pia/handbook64.zip
Bakker E, Achenbach U,·Bakker J, van Vliet J,·Peleman J,·Segers B, van der Heijden S,· van der Linde P, Graveland R,·Hutten R,· van Eck H, Coppoolse E,·An der Vossen E, Bakker J, Goverse A A high-resolution map of the H1 locus harboring resistance to the potato cyst nematode Globodera rostochiensis. Theor Appl Genet 2004;109:146-152.
Article
CAS
PubMed
Google Scholar
Barone A, Ritter E, Schachtschabel U, Debener T, Salamini F, Gebhardt C. Localization by restriction fragment length polymorphism mapping in potato of a major dominant gene conferring resistance to the potato cyst nematode Globodera rostochiensis. Mol Gen Genet. 1990;224:177–82.
Article
CAS
PubMed
Google Scholar
Ballvora A, Hesselbach J, Niewöhner J, Leiste D, Salamini F, Gebhardt C. Marker enrichment and high-resolution map of the segment of potato chromosome VII harbouring the nematode resistance gene Gro1. Mol Gen Genet. 1995;249:82–90.
Article
CAS
PubMed
Google Scholar
Kochetov AV, Titov SE, Kolodyazhnaya YS, Komarova ML, Koval VS, Makarova NN, IlYinskyi YY, Trifonova EA, Shumny VK. Tobacco transformants bearing antisense suppressor of proline dehydrogenase gene are characterized by higher proline content and cytoplasm osmotic pressure. Russ J Genet. 2004;40:216–8.
Article
CAS
Google Scholar
Trifonova EA, Sapotsky MV, Komarova ML, Scherban AB, Shumny VK, Polyakova AM, Lapshina LA, Kochetov AV, Malinovsky VI. Protection of transgenic tobacco plants expressing bovine pancreatic ribonuclease against tobacco mosaic virus. Plant Cell Rep. 2007;26:1121–6.
Article
CAS
PubMed
Google Scholar
Sugawara T, Trifonova EA, Kochetov AV, Kanayama Y. Expression of extracellular ribonuclease gene increases resistance to cucumber mosaic virus in tobacco. BMC Plant Biol. 2016;16(Suppl 3):246.
Article
PubMed
Google Scholar
Li X, Zhang Y, Yin L, Lu J. Overexpression of pathogen-induced grapevine TIR-NB-LRR gene VaRGA1 enhances disease resistance and drought and salt tolerance in Nicotiana benthamiana. Protoplasma. 2017;254:957–69.
Article
CAS
PubMed
Google Scholar
Gavrilenko T, Antonova O, Ovchinnikova A, Novikova L, Krylova E, Mironenko N, Pendinen G, Islamshina A, Shvachko N, Kiru S, Kostina L, Afanasenko O, Spooner DA. Microsatellite and morphological assessment of the Russian National Potato Collection. Genet Res Crop Evol. 2010;57:1151–64.
Article
Google Scholar
Gavrilenko T, Antonova O, Shuvalova A, Krylova E, Alpatyeva N, Spooner D, Novikova L. Genetic diversity and origin of cultivated potatoes based on plastid microsatellite polymorphism. Genet Res Crop Evol. 2013;60:1997–2015.
Article
CAS
Google Scholar
Bulman SR, Marshall JW. Differentiation of Australasian potato cyst nematode (PCN) populations using the polymerase chain reaction (PCR). N Z J Crop Hor Sci. 1997;25:123–9.
Article
CAS
Google Scholar
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
OEPP/EPPO. Testing of potato varieties to assess resistance to Globodera rostochiensis and Globodera pallida. OEPP/EPPO Bull. 2006;36:419–20.
Article
Google Scholar
Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature. 2011;475:189–95.
Article
Google Scholar
Jupe F, Witek K, Verweij W, Śliwka J, Pritchard L, Etherington GJ, Maclean D, Cock PJ, Leggett TM, Bryan GJ, Cardle L, Hein I, Jones JD. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J. 2013;76:530–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics. 2005;21(9):1859–75.
Article
CAS
PubMed
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.
Article
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg S. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SA, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;7:621–8.
Article
Google Scholar
Hirsch CD, Hamilton JP, Childs KL, Cepela J, Crisovan E, Vaillancourt B, Hirsch CN, Habermann M, Neal B, Buell CR, Spud DB. A resource for mining sequences, genotypes, and phenotypes to accelerate potato breeding. Plant Genome. 2014;7(1)
Du Z, Zhou X, Ling Y, Zhang Z, Su Z. AgriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38:W64–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kersey PJ, Allen JE, Armean I, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Falin LJ, Grabmueller C, Humphrey J, Kerhornou A, Khobova J, Aranganathan NK, Langridge N, Lowy E, McDowall MD, Maheswari U, Nuhn M, Ong CK, Overduin B, Paulini M, Pedro H, Perry E, Spudich G, Tapanari E, Walts B, Williams G, Tello-Ruiz M, Stein J, Wei S, Ware D, Bolser DM, Howe KL, Kulesha E, Lawson D, Maslen G, Staines DM. Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Res. 2016;44:D574–80.
Article
CAS
PubMed
Google Scholar
Kaloshian I, Desmond OJ, Atamian HS. Disease resistance-genes and defense responses during incompatible interactions. In: Jones J, Gheysen G, Fenoll C, editors. Genomics and molecular genetics of plant–nematode interactions. New York: Springer; 2011. p. 309–24.
Chapter
Google Scholar
Holbein J, Grundler FM, Siddique S. Plant basal resistance to nematodes: an update. J Exp Bot. 2016;67:2049–61.
Article
CAS
PubMed
Google Scholar
Asano K, Kobayashi A, Tsuda S, Nishinaka M, Tamiya S. DNA marker-assisted evaluation of potato genotypes for potential resistance to potato cyst nematode pathotypes not yet invading into Japan. Breed Sci. 2012;62:142–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paal J, Henselewski H, Muth J, Meksem K, Menéndez CM, Salamini F, Ballvora A, Gebhardt C. Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach. Plant J. 2004;38(2):285–97.
Article
CAS
PubMed
Google Scholar
Finkers-Tomczak A, Danan S, van Dijk T, Beyene A, Bouwman L, Overmars H, van Eck H, Goverse A, Bakker J, Bakker EA. High-resolution map of the Grp1 locus on chromosome V of potato harbouring broad-spectrum resistance to the cyst nematode species Globodera pallida and Globodera rostochiensis. Theor Appl Genet. 2009;119:165–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van der Vossen EAG, van der Voort JR, Kanyuka K, Bendahmane A, Sandbrink H, Baulcombe DC, Bakker J, Stiekema WJ, Klein-Lankhorst RM. Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J. 2000;23(5):567–76.
Article
CAS
PubMed
Google Scholar
Sanetomo R, Gebhardt K. Cytoplasmic genome types of European potatoes and their effects on complex agronomic traits. BMC Plant Biol. 2015;15:162.
Article
PubMed
PubMed Central
Google Scholar