Carlquist S. Wood, bark, and stem anatomy of Gnetales: a summary. Int J Plant Sci. 1996;157:S58–76.
Article
Google Scholar
Srivastava LM. Anatomy, chemistry and physiology of bark. Int Rev For Res. 1964;1:203–77.
Google Scholar
Jensen KH, Liesche J, Bohr T, Schulz A. Universality of phloem transport in seed plants. Plant Cell Environ. 2012;35(6):1065–76.
Article
CAS
PubMed
Google Scholar
Cernusak LA, Hutley LB, Beringer J, Holtum JA, Turner BL. Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. Agric For Meteorol. 2011;151(11):1462–70.
Article
Google Scholar
Pfanz H, Aschan G, Langenfeld-Heyser R, Wittmann C, Loose M. Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. Naturwissenschaften. 2002;89(4):147–62.
Article
CAS
PubMed
Google Scholar
Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Miralles-Wilhelm F. Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees. Plant Cell Environ. 2007;30(2):236–48.
Article
PubMed
Google Scholar
Niklas KJ. The mechanical role of bark. Am J Bot. 1999;86(4):465–9.
Article
CAS
PubMed
Google Scholar
Gill A, Ashton D. The role of bark type in relative tolerance to fire of three central Victorian eucalypts. Aust J Bot. 1968;16(3):491–8.
Article
Google Scholar
Lawes MJ, Adie H, Russell-Smith J, Murphy B, Midgley JJ. How do small savanna trees avoid stem mortality by fire? The roles of stem diameter, height and bark thickness. Ecosphere. 2011;2(4):1–13.
Article
Google Scholar
Romero C, Bolker BM. Effects of stem anatomical and structural traits on responses to stem damage: an experimental study in the Bolivian. Amazon. Can J For Res. 2008;38(3):611–8.
Article
Google Scholar
Romero C, Bolker BM, Edwards CE. Stem responses to damage: the evolutionary ecology of Quercus species in contrasting fire regimes. New Phytol. 2009;182(1):261–71.
Article
PubMed
Google Scholar
Fagard M, Höfte H, Vernhettes S. Cell wall mutants. Plant Physiol Biochem. 2000;38(1):15–25.
Article
CAS
Google Scholar
Plomion C, Leprovost G, Stokes A. Wood formation in trees. Plant Physiol. 2001;127(4):1513–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whitmore T. Studies in systematic bark morphology. New Phytol. 1962;61(2):191–207.
Article
Google Scholar
Dickmann DI: An overview of the genus Populus. In: Poplar culture in north America. Ottawa, Canada: NRC Research Press; 2001: p. 1–42.
Heyd RL. Managing beech bark disease in Michigan. In: Beech bark disease: Proceedings of the beech bark disease symposium June 16–18, 2004. Saranac lake: Gen Tech Rep NE; 2005.
Google Scholar
Marshall JM, Smith EL, Mech R, Storer AJ. Estimates of Agrilus planipennis infestation rates and potential survival of ash. Am Midl Nat. 2013;169(1):179–93.
Article
Google Scholar
Hengst GE, Dawson JO. Bark properties and fire resistance of selected tree species from the central hardwood region of North America. Can J For Res. 1994;24(4):688–96.
Article
Google Scholar
Wang GG, Wangen SR. Does frequent burning affect longleaf pine (Pinus palustris) bark thickness? Can J For Res. 2011;41(7):1562–5.
Article
Google Scholar
Pereira H. Cork chemical variability. Bioresources. 2013;8(2):2246–56.
CAS
Google Scholar
Romero C: Tree responses to stem damage. PhD thesis: University of Florida, Gainesville, FL, USA. 2006.
Yordanov YS, Regan S, Busov V. Members of the LATERAL ORGAN BOUNDARIES DOMAIN transcription factor family are involved in the regulation of secondary growth in Populus. Plant Cell. 2010;22(11):3662–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G. Genetics of gene expression surveyed in maize, mouse and man. Nature. 2003;422(6929):297–302.
Article
CAS
PubMed
Google Scholar
Beaulieu J, Doerksen T, Boyle B, Clément S, Deslauriers M, Beauseigle S, Blais S, Poulin P-L, Lenz P, Caron S. Association genetics of wood physical traits in the conifer white spruce and relationships with gene expression. Genetics. 2011;188(1):197–214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirst M, Myburg AA, De León JP, Kirst ME, Scott J, Sederoff R. Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus. Plant Physiol. 2004;135(4):2368–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Novaes E, Osorio L, Drost DR, Miles BL, Boaventura-Novaes CR, Benedict C, Dervinis C, Yu Q, Sykes R, Davis M. Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytol. 2009;182(4):878–90.
Article
CAS
PubMed
Google Scholar
Pot D, Rodrigues J-C, Rozenberg P, Chantre G, Tibbits J, Cahalan C, Pichavant F, Plomion C. QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait.). Tree Genet Genomes. 2006;2(1):10–24.
Article
Google Scholar
Thumma BR, Southerton SG, Bell JC, Owen JV, Henery ML, Moran GF. Quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens. Tree Genet Genomes. 2010;6(2):305–17.
Article
Google Scholar
Wegrzyn JL, Eckert AJ, Choi M, Lee JM, Stanton BJ, Sykes R, Davis MF, Tsai CJ, Neale DB. Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa, Salicaceae) secondary xylem. New Phytol. 2010;188(2):515–32.
Article
CAS
PubMed
Google Scholar
Muchero W, Sewell MM, Ranjan P, Gunter LE, Tschaplinski TJ, Yin T, Tuskan GA. Genome anchored QTLs for biomass productivity in hybrid Populus grown under contrasting environments. PLoS One. 2013;8(1):e54468.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muchero W, Guo J, DiFazio SP, Chen J-G, Ranjan P, Slavov GT, Gunter LE, Jawdy S, Bryan AC, Sykes R. High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus. BMC Genomics. 2015;16(1):24.
Article
PubMed
PubMed Central
Google Scholar
Bundock PC, Potts BM, Vaillancourt RE. Detection and stability of quantitative trait loci (QTL) in Eucalyptus globulus. Tree Genet Genomes. 2008;4(1):85–95.
Article
Google Scholar
Shepherd M, Cross M, Dieters MJ, Henry R. Branch architecture QTL for Pinus elliottii Var. elliottii x Pinus caribaea Var. hondurensis hybrids. Ann For Sci. 2002;59(5–6):617–25.
Article
Google Scholar
Liu T, Tang S, Zhu S, Tang Q. QTL mapping for fiber yield-related traits by constructing the first genetic linkage map in ramie (Boehmeria nivea L. gaud). Mol Breed. 2014;34(3):883–92.
Article
Google Scholar
Li J, Burmeister M. Genetical genomics: combining genetics with gene expression analysis. Hum Mol Genet. 2005;14(suppl 2):R163–9.
Article
CAS
PubMed
Google Scholar
Drost DR, Puranik S, Novaes E, Novaes CR, Dervinis C, Gailing O, Kirst M. Genetical genomics of Populus leaf shape variation. BMC Plant Biol. 2015;15(1):166.
Article
PubMed
PubMed Central
Google Scholar
Jansen RC, Nap J-P. Genetical genomics: the added value from segregation. Trends Genet. 2001;17(7):388–91.
Article
CAS
PubMed
Google Scholar
Yin T, Zhang X, Gunter L, Priya R, Sykes R, Davis M, Wullschleger SD, Tuskan GA. Differential detection of genetic loci underlying stem and root lignin content in Populus. PLoS One. 2010;5(11):e14021.
Article
PubMed
PubMed Central
Google Scholar
Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006;313(5793):1596–604.
Article
CAS
PubMed
Google Scholar
Fitch R: WinSTAT for Excel. The statistics add-in for Microsoft Excel R Fitch Software 2006.
Van Ooijen J, Kyazma B. MapQTL 6. In: Software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen: Kyazma BV; 2009.
Google Scholar
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci. 2003;100(16):9440–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Ooijen J. MapQTL® 5. In: Software for the mapping of quantitative trait loci in experimental populations. Wageningen: Kyazma BV; 2004.
Google Scholar
Kelleher CT, Chiu R, Shin H, Bosdet IE, Krzywinski MI, Fjell CD, Wilkin J, Yin T, DiFazio SP, Ali J. A physical map of the highly heterozygous Populus genome: integration with the genome sequence and genetic map and analysis of haplotype variation. Plant J. 2007;50(6):1063–78.
Article
CAS
PubMed
Google Scholar
Ko JH, Kim HT, Hwang I, Han KH. Tissue-type-specific transcriptome analysis identifies developing xylem-specific promoters in poplar. Plant Biotechnol J. 2012;10(5):587–96.
Article
CAS
PubMed
Google Scholar
Bolstad BM, Irizarry RA, Åstrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19(2):185–93.
Article
CAS
PubMed
Google Scholar
Saeed A, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M. TM4: a free, open-source system for microarray data management and analysis. BioTechniques. 2003;34(2):374.
CAS
PubMed
Google Scholar
Chu VT, Gottardo R, Raftery AE, Bumgarner RE, Yeung KY. MeV+ R: using MeV as a graphical user interface for bioconductor applications in microarray analysis. Genome Biol. 2008;9(7):R118.
Article
PubMed
PubMed Central
Google Scholar
Tsai C-J, Ranjan P, DiFazio SP, Tuskan GA, Johnson V, Joshi C. Poplar genome microarrays. In: Genetics, genomics and breeding of poplar. Enfield: Science Publishers; 2011. p. 112–27.
Chapter
Google Scholar
Tuskan GA, DiFazio S, Faivre-Rampant P, Gaudet M, Harfouche A, Jorge V, Labbé JL, Ranjan P, Sabatti M, Slavov G, et al. The obscure events contributing to the evolution of an incipient sex chromosome in Populus: a retrospective working hypothesis. Tree Genet Genomes. 2012;8(3):559–71.
Article
Google Scholar
Rae AM, Tricker PJ, Bunn SM, Taylor G. Adaptation of tree growth to elevated CO2: quantitative trait loci for biomass in Populus. New Phytol. 2007;175(1):59–69.
Article
CAS
PubMed
Google Scholar
Wu R, Stettler R. Quantitative genetics of growth and development in Populus. II. The partitioning of genotype×environment interaction in stem growth. Heredity. 1997;78(2):299–310.
Google Scholar
Wullschleger SD, Yin T, DiFazio S, Tschaplinski T, Gunter L, Davis M, Tuskan G. Phenotypic variation in growth and biomass distribution for two advanced-generation pedigrees of hybrid poplar. Can J For Res. 2005;35(8):1779–89.
Article
CAS
Google Scholar
Zhang D, Zhang Z, Yang K. QTL analysis of growth and wood chemical content traits in an interspecific backcross family of white poplar (Populus tomentosa × P. bolleana) × P. tomentosa. Can J For Res. 2006;36(8):2015–23.
Article
CAS
Google Scholar
Grattapaglia D, Bertolucci FL, Penchel R, Sederoff RR. Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. Genetics. 1996;144(3):1205–14.
CAS
PubMed
PubMed Central
Google Scholar
Lima MA, Lavorente GB, da Silva HK, Bragatto J, Rezende CA, Bernardinelli OD, Gomez LD, McQueen-Mason SJ, Labate CA, Polikarpov I. Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production–part 1. Biotechnology for Biofuels. 2013;6(1):1.
Article
Google Scholar
Matsushita Y, Yamauchi K, Takabe K, Awano T, Yoshinaga A, Kato M, Kobayashi T, Asada T, Furujyo A, Fukushima K. Enzymatic saccharification of Eucalyptus bark using hydrothermal pre-treatment with carbon dioxide. Bioresour Technol. 2010;101(13):4936–9.
Article
CAS
PubMed
Google Scholar
Dinus RJ: Genetic modification of short rotation poplar biomass feedstock for efficient conversion to ethanol. Report to US Department of Energy, Office of Fuels Development. Oak Ridge National Laboratory, Oak Ridge, Tennessee; 2000. Activity No EB 5203000.
Dinus RJ. Genetic improvement of poplar feedstock quality for ethanol production. Appl Biochem Biotechnol. 2001;91(1–9):23–34.
Article
PubMed
Google Scholar
Sannigrahi P, Ragauskas AJ, Tuskan GA. Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels Bioprod Biorefin. 2010;4(2):209–26.
Article
CAS
Google Scholar
Bdeir R, Busov V, Yordanov Y, Gailing O. Gene dosage effects and signatures of purifying selection in lateral organ boundaries domain (LBD) genes LBD1 and LBD18. Plant Syst Evol. 2016;320:433–45.
Article
Google Scholar
Shuai B, Reynaga-Peña CG, Springer PS. The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol. 2002;129(2):747–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rae AM, Pinel MP, Bastien C, Sabatti M, Street NR, Tucker J, Dixon C, Marron N, Dillen SY, Taylor G. QTL for yield in bioenergy Populus: identifying GxE interactions from growth at three contrasting sites. Tree Genet Genomes. 2008;4(1):97–112.
Article
Google Scholar
Grant EH, Fujino T, Beers EP, Brunner AM. Characterization of NAC domain transcription factors implicated in control of vascular cell differentiation in Arabidopsis and Populus. Planta. 2010;232(2):337–52.
Article
CAS
PubMed
Google Scholar
Schwessinger B, Roux M, Kadota Y, Ntoukakis V, Sklenar J, Jones A, Zipfel C. Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet. 2011;7(4):e1002046.
Article
CAS
PubMed
PubMed Central
Google Scholar
Halliday K, Devlin PF, Whitelam GC, Hanhart C, Koornneef M. The ELONGATED gene of Arabidopsis acts independently of light and gibberellins in the control of elongation growth. Plant J. 1996;9(3):305–12.
Article
CAS
PubMed
Google Scholar
Hecht V, Vielle-Calzada J-P, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U, de Vries SC. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol. 2001;127(3):803–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y, Tabesh M, Sugrue SP. Role of cell adhesion–associated protein, pinin (DRS/memA), in corneal epithelial migration. Invest Ophthalmol Vis Sci. 2000;41(6):1337–45.
CAS
PubMed
Google Scholar
Joo J-H, Alpatov R, Munguba GC, Jackson MR, Hunt ME, Sugrue SP. Reduction of Pnn by RNAi induces loss of cell-cell adhesion between human corneal epithelial cells. Mol Vis. 2005;11(1):133–42.
CAS
PubMed
Google Scholar
MacMillan CP, Mansfield SD, Stachurski ZH, Evans R, Southerton SG. Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant J. 2010;62(4):689–703.
Article
CAS
PubMed
Google Scholar
Ito S, Suzuki Y, Miyamoto K, Ueda J, Yamaguchi I. AtFLA11, a fasciclin-like arabinogalactan-protein, specifically localized in screlenchyma cells. Biosci Biotechnol Biochem. 2005;69(10):1963–9.
Article
CAS
PubMed
Google Scholar
Lafarguette F, Leplé JC, Déjardin A, Laurans F, Costa G, Lesage-Descauses MC, Pilate G. Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol. 2004;164(1):107–21.
Article
CAS
Google Scholar
Wang H, Jiang C, Wang C, Yang Y, Yang L, Gao X, Zhang H. Antisense expression of the fasciclin-like arabinogalactan protein FLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell-wall composition in transgenic trees. J Exp Bot. 2014;66(5):1291–302.
Article
PubMed
PubMed Central
Google Scholar