Food and Agriculture Organization of the United Nations, FAOSTAT. Rome, Italy. FAO (2009). Available at: http://faostat.fao.org (Accessed 3 Dec 2009).
Soybean Production (Food and Agriculture Organization of the United Nations—FAO) [(Accessed on 15 Oct 2013)]. Available online: http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/E.
Tran LS, Quach TN, Guttikonda SK, Aldrich DL, Kumar R, Neelakandan A, Valliyodan B, Nguyen HT. Molecular characterization of stress-inducible GmNAC genes in soybean. Mol Genet Genomics. 2009;281(6):647–64.
Article
CAS
PubMed
Google Scholar
United States Department of Agriculture (USDA). World soybean production 2016/2017. https://www.worldsoybeanproduction.com/.
Mohammad M. Abiotic and biotic stresses in soybean production, soybean production: Book, Volume 1. 2016. p. 53–77. ISBN: 978-0-12-801536-0.
Google Scholar
Dai A. Increasing drought under global warming in observations and models. Nat Climate Change. 2013;3:52–8. doi:10.1038/nclimate1811.
Article
Google Scholar
Foyer C H, Lam HM., Nguyen HT, Siddique KHM, Varshney R, et al. Neglecting legumes has compromised global food and nutritional security. Nat Plants 2016 (in press).
Ku Y-S, Au-Yeung W-K, Yung Y-L, Li M-W, Wen C-Q, Liu X, et al. Drought stress and tolerance in soybean. In: Board JE, editor. A comprehensive survey of international soybean research - genetics, physiology, agronomy and nitrogen relationships. New York: InTech; 2013. p. 209–37.
Google Scholar
Sablowski RWM, Meyerowitz EM. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell. 1998;92:93–103. doi:10.1016/s0092-8674(00)80902-2.
Article
CAS
PubMed
Google Scholar
Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. The No Apical Meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell. 1996;85:159–70.
Article
CAS
PubMed
Google Scholar
Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, et al. Transcriptional regulation by a NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J. 2008;56:867–80. doi:10.1111/j.1365-313X.2008.03646.x.
Article
CAS
PubMed
Google Scholar
Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell. 1997;9(6):841–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES, Dolferus R. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J. 2005;43(5):745–57.
Article
CAS
PubMed
Google Scholar
Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol. 2007;63(2):289–305.
Article
CAS
PubMed
Google Scholar
Wang X, Basnayake BM, Zhang H, Li G, Li W, Virk N, Mengiste T, Song F. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol Plant Microbe Interact. 2009;22(10):1227–38.
Article
CAS
PubMed
Google Scholar
Kikuchi K, Ueguchi-Tanaka M, Yoshida KT, Nagato Y, Matsusoka M, Hirano HY. Molecular analysis of the NAC gene family in rice. Mol Gen Genet. 2000;262:1047–51. doi:10.1007/pl00008647.
Article
CAS
PubMed
Google Scholar
Duval M, Hsieh TF, Kim SY, Thomas TL. Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol. 2002;50:237–48. doi:10.1023/a:1016028530943.
Article
CAS
PubMed
Google Scholar
Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 2003;10:239–47. doi:10.1093/dnares/10.6.239.
Article
CAS
PubMed
Google Scholar
Wang N, Zheng Y, Xin H, Fang L, Li S. Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera. Plant Cell Rep. 2013;32:61–75. doi:10.1007/s00299-012-1340-y.
Article
PubMed
Google Scholar
Satheesh V, Jagannadham PTK, Chidambaranathan P, Jain PK, Srinivasan R. NAC transcription factor genes: genome-wide identification, phylogenetic, motif and cis-regulatory element analysis in pigeonpea (Cajanus cajan (L.) Millsp.). Mol Biol Rep. 2014;41:7763–73. doi:10.1007/s11033-014-3669-5.
Article
CAS
PubMed
Google Scholar
Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, et al. Genome-wide analysis of NAC transcription factor family in rice. Gene. 2010;465:30–44. doi:10.1016/j.gene.2010.06.008.
Article
CAS
PubMed
Google Scholar
Puranik S, Sahu PP, Mandal SN BVS, Parida SK, Prasad M. Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.). PLoS One. 2013;8:e64594. doi:10.1371/journal.pone.0064594.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Tran LS. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res. 2011;18:263–76. doi:10.1093/dnares/dsr015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu TK, Song XM, Duan WK, Huang ZN, Liu GF, Li Y, et al. Genome-wide analysis and expression patterns of NAC transcription factor family under different developmental stages and abiotic stresses in Chinese cabbage. Plant Mol Biol Rep. 2014;32:1041–56. doi:10.1007/s11105-014-0712-6.
Article
Google Scholar
Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, Fukuda H, et al. VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell. 2010;22:1249–63. doi:10.1105/tpc.108.064048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo YF, Gan SS. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 2006;46:601–12. doi:10.1111/j.1365-313x.2006.02723.x.
Article
CAS
PubMed
Google Scholar
Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F, et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J. 2011;68:302–13. doi:10.1111/j.1365-313x.2011.04687.x. pmid:21707801.
Article
CAS
PubMed
Google Scholar
Shan W, Kuang JF, Chen L, Xie H, Peng HH, Xiao YY, et al. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening. J Exp Bot. 2012;63:5171–87. doi:10.1093/jxb/ers178.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol. 2005;56:165–85.
Article
CAS
PubMed
Google Scholar
Bu QY, Jiang HL, Li CB, Zhai QZ, Zhang JY, Wu X, et al. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res. 2008;18:756–67. doi:10.1038/cr.2008.53.
Article
CAS
PubMed
Google Scholar
Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, et al. Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell. 2004;16:2481–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A. 2006;103:12987–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol. 2010;153:185–97. doi:10.1104/pp.110.154773.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 2007;51:617–30.
Article
CAS
PubMed
Google Scholar
Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol. 2008;67:169–81.
Article
CAS
PubMed
Google Scholar
Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K. Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta. 2009;229:1065–75.
Article
CAS
PubMed
Google Scholar
Zheng X, Chen B, Lu G, Han B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Bioph Res Co. 2009;379:985–89.
Article
CAS
Google Scholar
Meng Q, Zhang C, Gai J, Yu D. Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean (Glycine max (L.) Merr.). J Plant Physiol. 2007;164:1002–12.
Article
CAS
PubMed
Google Scholar
Tran LSP, Quach TN, Guttikonda SK, Aldrich DL, Kumar R, Neelakandan A, Valliyodan B. Nguyen HT Molecular characterization of stress-inducible GmNAC genes in soybean. Mol Genet Genomics. 2009;281:647–64.
Article
CAS
PubMed
Google Scholar
Pinheiro GL, Marques CS, Costa MDBL, Reis PAB, Alves MS, Carvalho CM, Fietto LG, Fontes EPB. Complete inventory of soybean NAC transcription factors: Sequence conservation and expression analysis uncover their distinct roles in stress response. Gene. 2009;444:10–23.
Article
CAS
PubMed
Google Scholar
Le DT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS One. 2012;7:e49522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu W, Wei Y, Xia Z, Yan Y, Hou X, Zou M, et al. Genome-wide identification and expression analysis of the NAC transcription factor family in Cassava. PLoS One. 2015;10(8):e0136993. doi:10.1371/journal.pone.0136993.
Article
PubMed
PubMed Central
Google Scholar
Balazadeh S, Kwasniewski M, Caldana C, Mehrnia M, Zanor MI, Xue GP, et al. ORS1, an H(2)O(2)-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol Plant. 2011;4(2):346–60. doi:10.1093/mp/ssq080.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hibara K, Takada S, Tasaka M. CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. Plant J. 2003;36:687–96. doi:10.1046/j.1365-313X.2003.01911.x.
Article
CAS
PubMed
Google Scholar
Hibara K, Karim MR, Takada S, Taoka K, Furutani M, Aida M, Tasaka M. Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. Plant Cell. 2006;18(11):2946–57. doi:10.1105/tpc.106.045716.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ng S, Ivanova A, Duncan O, et al. A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis. Plant Cell. 2013;25(9):3450–71. doi:10.1105/tpc.113.113985.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu ZY, Kim SY, Hyeon do Y, Kim DH, Dong T, Park Y, Jin JB, Joo SH, Kim SK, Hong JC, Hwang D, Hwang I. The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. Plant Cell. 2013;25(11):4708–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patil M, Ramu SV, Jathish P, et al. Overexpression of AtNAC2 (ANAC092) in groundnut (Arachis hypogaea L.) improves abiotic stress tolerance. Plant Biotechnol Rep. 2014;8:161. doi:10.1007/s11816-013-0305-0.
Article
Google Scholar
Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, et al. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt- promoted senescence. Plant J. 2010;62:250–64. doi:10.1111/j.1365-313X.2010.04151.x.
Article
CAS
PubMed
Google Scholar
Mahmood K, El-Kereamy A, Kim SH, Nambara E, Rothstein SJ. ANAC032 positively regulates age-dependent and stress-induced senescence in Arabidopsis thaliana. Plant Cell Physiol. 2016;57(10):2029–46.
Article
CAS
PubMed
Google Scholar
Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS, Yamaguchi-Shinozaki K, Shinozaki K. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 2004;39(6):863–76.
Article
CAS
PubMed
Google Scholar
Zhong R, Lee C, Ye ZH. Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends Plant Sci. 2010;15:625–32. doi:10.1016/j.tplants.2010.08.007.
Article
CAS
PubMed
Google Scholar
Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI, et al. JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell. 2012;24:482–506. doi:10.1105/tpc.111.090894.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang SD, Seo PJ, Yoon HK. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genesThe Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell. 2011;5(2):2155–68.
Article
Google Scholar
Kim MJ, Park MJ, Seo PJ, Song JS, Kim HJ, Park CM. Controlled nuclear import of the transcription factor NTL6 reveals a cytoplasmic role of SnRK2.8 in the drought-stress response. Biochem J. 2012;448(3):353–63. doi:10.1042/BJ20120244.
Article
CAS
PubMed
Google Scholar
Yoon HK, Kim SG, Kim SY, Park CM. Regulation of leaf senescence by NTL9-mediated osmotic stress signaling in Arabidopsis. Mol Cells. 2008;25(3):438–45.
CAS
PubMed
Google Scholar
So Yeon Y, Yunhee K, Soo Young K, Jong Seob L, Ji Hoon A. Control of flowering time and cold response by a NAC-Domain protein in Arabidopsis. PLoS One. 2007;2(7):e642. doi:10.1371/journal.pone.0000642.
Article
Google Scholar
Cenci A, Guignon V, Roux N, Rouard M. Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots. Plant Mol Biol. 2014;85:63–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shang H, Li W, Zou C, Yuan Y. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr. chromosomal location, structure, phylogeny, and expression patterns. J Integr Plant Biol. 2013;55:663–76. doi:10.1111/jipb.12085.
Article
CAS
PubMed
Google Scholar
Singh AK, Sharma V, Pal AK, Acharya V, Ahuja PS. Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.). DNA Res. 2013;20:403–23. doi:10.1093/dnares/dst019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshiyama KO, Kimura S, Maki H, Britt AB, Umeda M. The role of SOG1, a plant-specific transcriptional regulator, in the DNA damage response. Plant Signal Behav. 2014;9:e28889. doi:10.4161/psb.28889.
Thao PH, Thu NBA, Hoang XL, Ha CV, Tran LS. Differential expression analysis of a subset of drought-responsive GmNAC genes in Two soybean cultivars differing in drought tolerance. Int J Mol Sci. 2013;14(12):23828–41. doi:10.3390/ijms141223828.
Article
PubMed
PubMed Central
Google Scholar
Phytozome quick search. 2016. Retrieved from http://phytozome.jgi.doe.gov/.
National Centre for Biotechnology Information Search Engine. 2016. Retrieved from http://www.ncbi.nlm.nih.gov/.
Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P. SMART 4.0: towards genomic data integration. Nucleic Acids Res. 2004;32:D142–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A. Pfam: clans, web tools and services. Nucleic Acids Res. 2006;34(Database):D247–51.
Article
CAS
PubMed
Google Scholar
Mailund T, Pedersen C. QuickJoin--fast neighbour-joining tree reconstruction. Bioinformatics. 2004;20(17):3261–2.
Article
CAS
PubMed
Google Scholar
Guo AY, Zhu QH, Chen X, Luo JC. [GSDS: a gene structure display server]. Yi Chuan. 2007;29(8):1023–26.
Article
CAS
PubMed
Google Scholar
MEME Suite 4.10.1 Patches. 2016. Retrieved from http://meme-suite.org/meme-software/4.10.1/readme.html.
Bailey T, Boden M, BuskeF A, Frith M, et al. MEME suite: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Interpro. 2016. Retrieved from http://www.ebi.ac.uk/interpro/.
ARAMEMNON. 2016. Retrieved from http://aramemnon.botanik.uni-koeln.de/
Livak KJ, Schmittgen TD. Analysis of relative gene expression data usingreal-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25(4):402–08.
Article
CAS
PubMed
Google Scholar