Kessler A, Baldwin IT. Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol. 2002;53:299–328.
Article
CAS
PubMed
Google Scholar
Kerchev PI, Fenton B, Foyer CH, Hancock RD. Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell Environ. 2012;35(2):441–53.
Article
CAS
PubMed
Google Scholar
Masters GJ, Brown VK, Gange AC. Plant mediated interactions between aboveground and belowground insect Herbivores. Oikos. 1993;66(1):148–51.
Article
Google Scholar
Endara MJ, Coley PD. The resource availability hypothesis revisited: a meta-analysis. Funct Ecol. 2011;25(2):389–98.
Article
Google Scholar
Dogimont C, Bendahmane A, Chovelon V, Boissot N. Host plant resistance to aphids in cultivated crops: genetic and molecular bases, and interactions with aphid populations. C R Biol. 2010;333(6–7):566–73.
Article
CAS
PubMed
Google Scholar
Smith CM, Clement SL. Molecular Bases of Plant Resistance to Arthropods. Annu Rev Entomol. 2012;57:309–28.
Article
CAS
PubMed
Google Scholar
Kaloshian I, Walling LL. Hemipteran and dipteran pests: Effectors and plant host immune regulators. J Integr. Plant Biol. 2015;58(4):350-61.
Liu XM, Brown-Guedira GL, Hatchett JH, Owuoche JO, Chen MS. Genetic characterization and molecular mapping of a Hessian fly-resistance gene transferred from T-turgidum ssp dicoccum to common wheat. Theor Appl Genet. 2005;111(7):1308–15.
Article
CAS
PubMed
Google Scholar
Sardesai N, Nemacheck JA, Subramanyam S, Williams CE. Identification and mapping of H32, a new wheat gene conferring resistance to Hessian fly. Theor Appl Genet. 2005;111(6):1167–73.
Article
CAS
PubMed
Google Scholar
Burd JD, Porter DR. Biotypic diversity in Greenbug (Hemiptera : Aphididae): characterizing new virulence and host associations. J Econ Entomol. 2006;99(3):959–65.
Article
PubMed
Google Scholar
Oerke EC. Crop losses to pests. J Agr Sci. 2006;144:31–43.
Article
Google Scholar
Furch ACU, van Bel AJE, Will T. Aphid salivary proteases are capable of degrading sieve-tube proteins. J Exp Bot. 2015;66(2):533–9.
Article
CAS
PubMed
Google Scholar
Maag D, Erb M, Kollner TG, Gershenzon J. Defensive weapons and defense signals in plants: some metabolites serve both roles. BioEssays. 2015;37(2):167–74.
Article
PubMed
Google Scholar
Smith CM. Plant resistance to arthropods: molecular and conventional approaches. 2005.
Book
Google Scholar
Foyer CH, Rasool B, Davey JW, Hancock RD. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. J Exp Bot. 2016;67(7):2025–37.
Article
CAS
PubMed
Google Scholar
Foyer CH, Verrall SR, Hancock RD. Systematic analysis of phloem-feeding insect-induced transcriptional reprogramming in Arabidopsis highlights common features and reveals distinct responses to specialist and generalist insects. J Exp Bot. 2015;66(2):495–512.
Article
CAS
PubMed
Google Scholar
Smith CM, Chuang WP. Plant resistance to aphid feeding: behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding. Pest Manag Sci. 2014;70(4):528–40.
Article
PubMed
CAS
Google Scholar
Koch KG, Chapman K, Louis J, Heng-Moss T, Sarath G. Plant tolerance: a unique approach to control Hemipteran pests. Front Plant Sci. 2016;7:1363.
Article
PubMed
PubMed Central
Google Scholar
Gutsche A, Heng-Moss T, Sarath G, Twigg P, Xia Y, Lu G, Mornhinweg D. Gene expression profiling of tolerant barley in response to Diuraphis noxia (Hemiptera: Aphididae) feeding. B Entomol Res. 2009;99(2):163–73.
Article
CAS
Google Scholar
Koch KG, Palmer N, Stamm M, Bradshaw JD, Blankenship E, Baird LM, Sarath G, Heng-Moss TM. Characterization of Greenbug feeding behavior and aphid (Hemiptera: Aphididae) host preference in relation to resistant and susceptible Tetraploid Switchgrass populations. Bioenerg Res. 2015;8(1):165–74.
Article
Google Scholar
Koch KG, Fithian R, Heng-Moss TM, Bradshaw JD, Sarath G, Spilker C. Evaluation of tetraploid switchgrass (Poales: Poaceae) populations for host suitability and differential resistance to four cereal aphids. J Econ Entomol. 2014;107(1):424–31.
Article
PubMed
Google Scholar
Koch K, Bradshaw J, Heng-Moss T, Sarath G. Categories of Resistance to Greenbug and Yellow Sugarcane Aphid (Hemiptera: Aphididae) in Three Tetraploid Switchgrass Populations. Bioenerg Res. 2014;7(3):909-18.
Vogel KP, Sarath G, Saathoff AJ, Mitchell RB. Switchgrass. Energy Crops. 2011;3:341–80.
CAS
Google Scholar
Louis J, Shah J. Plant defence against aphids: the PAD4 signalling nexus. J Exp Bot. 2015;66(2):449–54.
Article
CAS
PubMed
Google Scholar
Tzin V, Fernandez-Pozo N, Richter A, Schmelz EA, Schoettner M, Schafer M, Ahern KR, Meihls LN, Kaur H, Huffaker A, et al. Dynamic maize responses to aphid feeding Are revealed by a time series of transcriptomic and metabolomic assays. Plant Physiol. 2015;169(3):1727–43.
CAS
PubMed
PubMed Central
Google Scholar
Prochaska TJ, Donze-Reiner T, Marchi-Werle L, Palmer NA, Hunt TE, Sarath G, Heng-Moss T. Transcriptional responses of tolerant and susceptible soybeans to soybean aphid (Aphis glycines Matsumura) herbivory. Arthropod-Plant Inte. 2015;9(4):347–59.
Article
Google Scholar
Studham ME, MacIntosh GC. Multiple Phytohormone signals control the transcriptional response to soybean aphid infestation in susceptible and resistant soybean plants. Mol Plant Microbe In. 2013;26(1):116–29.
Article
CAS
Google Scholar
Kamphuis LG, Zulak K, Gao LL, Anderson J, Singh KB. Plant-aphid interactions with a focus on legumes. Funct Plant Biol. 2013;40(12):1271–84.
Article
CAS
Google Scholar
Scully ED, Donze-Reiner T, Wang H, Eickhoff TE, Baxendale F, Twigg P, Kovacs F, Heng-Moss T, Sattler SE, Sarath G. Identification of an orthologous clade of peroxidases that respond to feeding by greenbugs (<i > Schizaphis graminum</i>) in C4 grasses. Funct Plant Biol. 2016;43(12):1134–48.
Article
CAS
Google Scholar
Dowd PF, Sarath G, Mitchell RB, Saathoff AJ, Vogel KP. Insect resistance of a full sib family of tetraploid switchgrass Panicum virgatum L. with varying lignin levels. Genet Resour Crop Evol. 2013;60(3):975–84.
Article
Google Scholar
Dowd PF, Johnson ET. Differential resistance of switchgrass Panicum virgatum L. lines to fall armyworms Spodoptera frugiperda (J. E. Smith). Genet Resour Crop Evol. 2009;56(8):1077–89.
Article
Google Scholar
Moore KJ, Moser LE, Vogel KP, Waller SS, Johnson BE, Pedersen JF. Describing and quantifying growth stages of perennial forage grasses. Agron J. 1991;83(6):1073–7.
Article
Google Scholar
Heng-Moss TM, Baxendale FP, Riordan TP, Foster JE. Evaluation of buffalograss germplasm for resistance to Blissus occiduus (Hemiptera : Lygaeidae). J Econ Entomol. 2002;95(5):1054–8.
Article
PubMed
Google Scholar
Palmer NA, Donze-Reiner T, Horvath D, Heng-Moss T, Waters B, Tobias C, Sarath G. Switchgrass (Panicum virgatum L) flag leaf transcriptomes reveal molecular signatures of leaf development, senescence, and mineral dynamics. Funct Integr Genomic. 2015;15(1):1–16.
Article
CAS
Google Scholar
Chomczynski P, Sacchi N. Single-step method of Rna isolation by acid Guanidinium Thiocyanate phenol chloroform extraction. Anal Biochem. 1987;162(1):156–9.
Article
CAS
PubMed
Google Scholar
Goodstein DM, Shu SQ, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40(D1):D1178–86.
Article
CAS
PubMed
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. Bmc Bioinf. 2008;9:559.
Article
CAS
Google Scholar
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17.
PubMed
Google Scholar
Rinerson CI, Scully ED, Palmer NA, Donze-Reiner T, Rabara RC, Tripathi P, Shen QXJ, Sattler SE, Rohila JS, Sarath G, et al. The WRKY transcription factor family and senescence in switchgrass. BMC Genomics. 2015;16:912.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, Pico AR, Bader GD, Ideker T. A travel guide to Cytoscape plugins. Nat Methods. 2012;9(11):1069–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palmer NA, Saathoff AJ, Tobias CM, Twigg P, Xia Y, Vogel KP, Madhavan S, Sattler SE, Sarath G. Contrasting metabolism in perenniating structures of upland and lowland switchgrass plants late in the growing season. Plos One. 2014;9(8):e105138.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chakraborty S, Hill AL, Shirsekar G, Afzal AJ, Wang GL, Mackey D, Bonello P. Quantification of hydrogen peroxide in plant tissues using Amplex Red. Methods. 2016;109:105–13.
Article
CAS
PubMed
Google Scholar
Heng-Moss T, Sarath G, Baxendale F, Novak D, Bose S, Ni X, Quisenberry S. Characterization of oxidative enzyme changes in buffalograsses challenged by Blissus occiduus. J Econ Entomol. 2004;97(3):1086–95.
Article
CAS
PubMed
Google Scholar
Pierson LM, Heng-Moss TM, Hunt TE, Reese J. Physiological responses of resistant and susceptible reproductive stage soybean to soybean aphid (Aphis glycines Matsumura) feeding. Arthropod-Plant Inte. 2011;5(1):49–58.
Article
Google Scholar
Richardson A, Duncan J, McDougall GJ. Oxidase activity in lignifying xylem of a taxonomically diverse range of trees: identification of a conifer laccase. Tree Physiol. 2000;20(15):1039–47.
Article
CAS
PubMed
Google Scholar
Sterjiades R, Dean JF, Eriksson KE. Laccase from Sycamore Maple (Acer pseudoplatanus) Polymerizes Monolignols. Plant Physiol. 1992;99(3):1162–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keith R, Mitchell-Olds T. Genetic variation for resistance to herbivores and plant pathogens: hypotheses, mechanisms and evolutionary implications. Plant Pathol. 2013;62:122–32.
Article
Google Scholar
Singh V, Louis J, Ayre BG, Reese JC, Shah J. TREHALOSE PHOSPHATE SYNTHASE11-dependent trehalose metabolism promotes Arabidopsis thaliana defense against the phloem-feeding insect Myzus persicae. Plant J. 2011;67(1):94–104.
Article
CAS
PubMed
Google Scholar
Navarova H, Bernsdorff F, Doring AC, Zeier J. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell. 2012;24(12):5123–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Escamilla-Trevino L, Shen H, Hernandez T, Yin YB, Xu Y, Dixon R. Early lignin pathway enzymes and routes to chlorogenic acid in switchgrass (Panicum virgatum L.). Plant Mol Biol. 2014;84(4–5):565–76.
Article
CAS
PubMed
Google Scholar
Zeier J. New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell Environ. 2013;36(12):2085–103.
Article
CAS
PubMed
Google Scholar
Hensel LL, Grbic V, Baumgarten DA, Bleecker AB. Developmental and Age-related processes that influence the longevity and senescence of photosynthetic tissues in arabidoposis. Plant Cell. 1993;5(5):553–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo Y, Gan S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 2006;46(4):601–12.
Article
CAS
PubMed
Google Scholar
Guo YF, Gan SS. Leaf senescence: Signals, execution, and regulation. Curr Top Dev Biol. 2005;71:83–112.
Article
CAS
PubMed
Google Scholar
Hortensteiner S, Krautler B. Chlorophyll breakdown in higher plants. Biochim Biophys Acta. 2011;1807(8):977–88.
Article
CAS
PubMed
Google Scholar
Rushton PJ, Somssich IE, Ringler P, Shen QJ. WRKY transcription factors. Trends Plant Sci. 2010;15(5):247–58.
Article
CAS
PubMed
Google Scholar
Wang H, Xu Q, Kong YH, Chen Y, Duan JY, Wu WH, Chen YF. Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation. Plant Physiol. 2014;164(4):2020–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su T, Xu Q, Zhang FC, Chen Y, Li LQ, Wu WH, Chen YF. WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis. Plant Physiol. 2015;167(4):1579–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Verk MC, Bol JF, Linthorst HJ. WRKY transcription factors involved in activation of SA biosynthesis genes. BMC Plant Biol. 2011;11:89.
Article
PubMed
PubMed Central
CAS
Google Scholar
Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol. 2012;159(1):266–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baldoni E, Genga A, Cominelli E. Plant MYB transcription factors: their role in drought response mechanisms. Int J Mol Sci. 2015;16(7):15811–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakano Y, Yamaguchi M, Endo H, Rejab NA, Ohtani M. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. Front Plant Sci. 2015;6:288.
Article
PubMed
PubMed Central
Google Scholar
Braun P, Carvunis AR, Charloteaux B, Dreze M, Ecker JR, Hill DE, Roth FP, Vidal M, Galli M, Balumuri P, et al. Evidence for network evolution in an Arabidopsis Interactome Map. Science. 2011;333(6042):601–7.
Article
CAS
Google Scholar
Marin-de la Rosa N, Sotillo B, Miskolczi P, Gibbs DJ, Vicente J, Carbonero P, Onate-Sanchez L, Holdsworth MJ, Bhalerao R, Alabadi D, et al. Large-scale identification of gibberellin-related transcription factors defines group VII ETHYLENE RESPONSE FACTORS as functional DELLA partners. Plant Physiol. 2014;166(2):1022–32.
Article
PubMed
CAS
Google Scholar
Misra P, Pandey A, Tiwari M, Chandrashekar K, Sidhu OP, Asif MH, Chakrabarty D, Singh PK, Trivedi PK, Nath P, et al. Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiol. 2010;152(4):2258–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Louis J, Shah J. Arabidopsis thaliana-Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids. Front Plant Sci. 2013;4:213.
Article
PubMed
PubMed Central
CAS
Google Scholar
Boisson-Dernier A, Kessler SA, Grossniklaus U. The walls have ears: the role of plant CrRLK1Ls in sensing and transducing extracellular signals. J Exp Bot. 2011;62(5):1581–91.
Article
CAS
PubMed
Google Scholar
Cook DE, Mesarich CH, Thomma BP. Understanding plant immunity as a surveillance system to detect invasion. Annu Rev Phytopathol. 2015;53:541–63.
Article
CAS
PubMed
Google Scholar
Boller T, He SY. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science. 2009;324(5928):742–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sabri A, Vandermoten S, Leroy PD, Haubruge E, Hance T, Thonart P, De Pauw E, Francis F. Proteomic investigation of aphid honeydew reveals an unexpected diversity of proteins. Plos One. 2013;8(9):e74656.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bischoff V, Nita S, Neumetzler L, Schindelasch D, Urbain A, Eshed R, Persson S, Delmer D, Scheible WR. TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiol. 2010;153(2):590–602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prokhnevsky AI, Peremyslov VV, Dolja VV. Overlapping functions of the four class XI myosins in Arabidopsis growth, root hair elongation, and organelle motility. Proc Natl Acad Sci U S A. 2008;105(50):19744–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ueda H, Tamura K, Hara-Nishimura I. Functions of plant-specific myosin XI: from intracellular motility to plant postures. Curr Opin Plant Biol. 2015;28:30–8.
Article
CAS
PubMed
Google Scholar
Yang L, Qin L, Liu G, Peremyslov VV, Dolja VV, Wei Y. Myosins XI modulate host cellular responses and penetration resistance to fungal pathogens. Proc Natl Acad Sci U S A. 2014;111(38):13996–4001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mai VC, Bednarski W, Borowiak-Sobkowiak B, Wilkaniec B, Samardakiewicz S, Morkunas I. Oxidative stress in pea seedling leaves in response to Acyrthosiphon pisum infestation. Phytochemistry. 2013;93:49–62.
Article
CAS
PubMed
Google Scholar
Ni X, Quisenberry SS, Heng-Moss T, Markwell J, Sarath G, Klucas R, Baxendale F. Oxidative responses of resistant and susceptible cereal leaves to symptomatic and nonsymptomatic cereal aphid (Hemiptera: Aphididae) feeding. J Econ Entomol. 2001;94(3):743–51.
Article
CAS
PubMed
Google Scholar
Ramm C, Wachholtz M, Amundsen K, Donze T, Heng-Moss T, Twigg P, Palmer NA, Sarath G, Baxendale F. Transcriptional profiling of resistant and susceptible Buffalograsses in response to Blissus Occiduus (Hemiptera: Blissidae) feeding. J Econ Entomol. 2015;108(3):1354–62.
Article
PubMed
Google Scholar
Marchi-Werle L, Heng-Moss TM, Hunt TE, Baldin ELL, Baird LM. Characterization of Peroxidase changes in tolerant and susceptible soybeans challenged by soybean aphid (Hemiptera: Aphididae). J Econ Entomol. 2014;107(5):1985–91.
Article
CAS
PubMed
Google Scholar
Heng-Moss T, Macedo T, Franzen L, Baxendale F, Higley L, Sarath G. Physiological responses of resistant and susceptible buffalograsses to Blissus occiduus (Hemiptera: Blissidae) feeding. J Econ Entomol. 2006;99(1):222–38.
Article
CAS
PubMed
Google Scholar
Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal. 2009;2(84):ra45.
Article
PubMed
Google Scholar
Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R. Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol. 2011;14(6):691–9.
Article
CAS
PubMed
Google Scholar
Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 2002;53(372):1331–41.
Article
CAS
PubMed
Google Scholar
Saathoff AJ, Donze T, Palmer NA, Bradshaw J, Heng-Moss T, Twigg P, Tobias CM, Lagrimini M, Sarath G. Towards uncovering the roles of switchgrass peroxidases in plant processes. Front Plant Sci. 2013;4:202.
Article
PubMed
PubMed Central
Google Scholar
Dowd PF, Johnson ET, Pinkerton TS. Identification and properties of insect resistance-associated maize anionic peroxidases. Phytochemistry. 2010;71(11–12):1289–97.
Article
CAS
PubMed
Google Scholar
Passardi F, Cosio C, Penel C, Dunand C. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep. 2005;24(5):255–65.
Article
CAS
PubMed
Google Scholar
Berthet S, Thevenin J, Baratiny D, Demont-Caulet N, Debeaujon I, Bidzinski P, Leple JC, Huis R, Hawkins S, Gomez LD, et al. Role of Plant Laccases in Lignin Polymerization. Lignins. 2012;61:145–72.
CAS
Google Scholar
Lazebnik J, Frago E, Dicke M, van Loon JJA. Phytohormone mediation of interactions between herbivores and plant pathogens. J Chem Ecol. 2014;40(7):730–41.
Article
CAS
PubMed
Google Scholar
Morkunas I, Mai V, Gabrys B. Phytohormonal signaling in plant responses to aphid feeding. Acta Physiol Plant. 2011;33(6):2057–73.
Article
CAS
Google Scholar
Walling LL. Adaptive defense responses to pathogens and insects. Adv Bot Res. 2009;51:551–612.
Article
CAS
Google Scholar
Fowler JH, Narvaez-Vasquez J, Aromdee DN, Pautot V, Holzer FM, Walling LL. Leucine aminopeptidase regulates defense and wound signaling in tomato downstream of jasmonic acid. Plant Cell. 2009;21(4):1239–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arimura GI, Ozawa R, Maffei ME. Recent advances in plant early signaling in response to Herbivory. Int J Mol Sci. 2011;12(6):3723–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mur LA, Kenton P, Atzorn R, Miersch O, Wasternack C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 2006;140(1):249–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bosch M, Wright LP, Gershenzon J, Wasternack C, Hause B, Schaller A, Stintzi A. Jasmonic acid and its precursor 12-oxophytodienoic acid control different aspects of constitutive and induced herbivore defenses in tomato. Plant Physiol. 2014;166(1):396–410.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guo HM, Sun SC, Zhang FM, Miao XX. Identification of genes potentially related to herbivore resistance in OPR3 overexpression rice by microarray analysis. Physiol Mol Plant P. 2015;92:166–74.
Article
CAS
Google Scholar
Guo HM, Li HC, Zhou SR, Xue HW, Miao XX. Cis-12-oxo-phytodienoic acid stimulates rice defense response to a piercing-sucking insect. Mol Plant. 2014;7(11):1683–92.
Article
CAS
PubMed
Google Scholar
Lu J, Robert CA, Riemann M, Cosme M, Mene-Saffrane L, Massana J, Stout MJ, Lou Y, Gershenzon J, Erb M. Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance. Plant Physiol. 2015;167(3):1100–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kloth KJ, Wiegers GL, Busscher-Lange J, van Haarst JC, Kruijer W, Bouwmeester HJ, Dicke M, Jongsma MA. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling. J Exp Bot. 2016;67(11):3383–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stewart SA, Hodge S, Bennett M, Mansfield JW, Powell G. Aphid induction of phytohormones in Medicago truncatula is dependent upon time post-infestation, aphid density and the genotypes of both plant and insect. Arthropod-Plant Inte. 2016;10(1):41–53.
Article
Google Scholar
Selig P, Keough S, Nalam VJ, Nachappa P. Jasmonate-dependent plant defenses mediate soybean thrips and soybean aphid performance on soybean. Arthropod-Plant Inte. 2016;10(4):273–82.
Article
Google Scholar
Mai VC, Drzewiecka K, Jelen H, Narozna D, Rucinska-Sobkowiak R, Kesy J, Floryszak-Wieczorek J, Gabrys B, Morkunas I. Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation. Plant Sci. 2014;221:1–12.
Article
PubMed
CAS
Google Scholar
Yang H, Ludewig U. Lysine catabolism, amino acid transport, and systemic acquired resistance: what is the link? Plant Signal Behav. 2014;9(7):e28933.
Article
PubMed Central
CAS
Google Scholar
Klein AT, Yagnik GB, Hohenstein JD, Ji Z, Zi J, Reichert MD, MacIntosh GC, Yang B, Peters RJ, Vela J, et al. Investigation of the chemical interface in the soybean-aphid and rice-bacteria interactions using MALDI-mass spectrometry imaging. Anal Chem. 2015;87(10):5294–301.
Article
CAS
PubMed
Google Scholar
Cecchini NM, Jung HW, Engle NL, Tschaplinski TJ, Greenberg JT. ALD1 regulates basal immune components and early inducible defense responses in Arabidopsis. Mol Plant Microbe Interact. 2015;28(4):455–66.
Article
CAS
PubMed
Google Scholar
Camanes G, Scalschi L, Vicedo B, Gonzalez-Bosch C, Garcia-Agustin P. An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanumlycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytiscinerea and Pseudomonas syringae. Plant J. 2015;84(1):125–39.
Article
CAS
PubMed
Google Scholar
Shah J, Chaturvedi R, Chowdhury Z, Venables B, Petros RA. Signaling by small metabolites in systemic acquired resistance. Plant J. 2014;79(4):645–58.
Article
CAS
PubMed
Google Scholar
War AR, Paulraj MG, Hussain B, Buhroo AA, Ignacimuthu S, Sharma HC. Effect of plant secondary metabolites on legume pod borer, Helicoverpa armigera. J Pest Sci. 2013;86(3):399–408.
Article
Google Scholar
Sheen J. Master regulators in plant glucose signaling networks. J Plant Biol. 2014;57(2):67–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lastdrager J, Hanson J, Smeekens S. Sugar signals and the control of plant growth and development. J Exp Bot. 2014;65(3):799–807.
Article
CAS
PubMed
Google Scholar
Zhou S, Lou YR, Tzin V, Jander G. Alteration of plant primary metabolism in response to insect Herbivory. Plant Physiol. 2015;169(3):1488–98.
CAS
PubMed
PubMed Central
Google Scholar
Rech GE, Vargas WA, Sukno SA, Thon MR. Identification of positive selection in disease response genes within members of the Poaceae. Plant Signal Behav. 2012;7(12):1667–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sexton AC, Cozijnsen AJ, Keniry A, Jewell E, Love CG, Batley J, Edwards D, Howlett BJ. Comparison of transcription of multiple genes at three developmental stages of the plant pathogen Sclerotinia sclerotiorum. FEMS Microbiol Lett. 2006;258(1):150–60.
Article
CAS
PubMed
Google Scholar
Scheideler M, Schlaich NL, Fellenberg K, Beissbarth T, Hauser NC, Vingron M, Slusarenko AJ, Hoheisel JD. Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays. J Biol Chem. 2002;277(12):10555–61.
Article
CAS
PubMed
Google Scholar
Avila CA, Arevalo-Soliz LM, Lorence A, Goggin FL. Expression of alpha-DIOXYGENASE 1 in tomato and Arabidopsis contributes to plant defenses against aphids. Mol Plant Microbe In. 2013;26(8):977–86.
Article
CAS
Google Scholar
Schmelz EA, Kaplan F, Huffaker A, Dafoe NJ, Vaughan MM, Ni X, Rocca JR, Alborn HT, Teal PE. Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc Natl Acad Sci U S A. 2011;108(13):5455–60.
Article
CAS
PubMed
PubMed Central
Google Scholar