Wang Y, Frei M. Stressed food – the impact of abiotic environmental stresses on crop quality. Agric Ecos Environ. 2011;141:271–86.
Article
Google Scholar
Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol. 2011;11:163–76.
Article
PubMed
PubMed Central
Google Scholar
Pfannschmidt T, Brautigam K, Wagner R, Dietzel L, Schroter Y, Steiner S, Nykytenko A. Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding. Ann Bot. 2009;103:599–607.
Article
CAS
PubMed
Google Scholar
Rabara RC, Tripathi P, Reese RN, Rushton DL, Alexander D, Timko MP, Shen QJ, Rushton PJ. Tobacco drought stress responses reveal new targets for Solanaceae crop improvement. BMC Genomics. 2015;16:484–505.
Article
PubMed
PubMed Central
Google Scholar
Gläßer C, Haberer G, Finkemeier I, Pfannschmidt T, Kleine T, Leister D, Dietz KJ, Hausler RE, Grimm B, Mayer KF. Meta-analysis of retrograde signaling in Arabidopsis thaliana reveals a core module of genes embedded in complex cellular signaling networks. Mol Plant. 2014;7:1167–90.
Article
PubMed
Google Scholar
Kmiecik P, Leonardelli M, Teige M. Novel connections in plant organellar signalling link different stress responses and signalling pathways. J Exp Bot. 2016;67:3793–807.
Article
CAS
PubMed
Google Scholar
Sun AZ, Guo FQ. Chloroplast retrograde regulation of heat stress responses in plants. Front Plant Sci. 2016;7:398.
PubMed
PubMed Central
Google Scholar
Foyer CH, Karpinska B, Krupinska K. The functions of WHIRLY1 and REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 in cross tolerance responses in plants: a hypothesis. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130226.
Article
PubMed
PubMed Central
Google Scholar
Joshi PN. What makes chloroplast an inclusive sensor of environmental stresses? Biochem Pharmacol. 2014;3:e150.
Google Scholar
Biehler K, Fock H. Evidence for contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol. 1996;112:265–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
FAOSTAT-Food and Agriculture Organization of the United Nations Statistics Division. http://www.fao.org/faostat/en/#data/QC/visualize. Accessed Dec 2015.
Aldrich HT, Salandanan K, Kendall P, Bunning M, Stonaker F, Kulen O, Stushnoff C. Cultivar choice provides options for local production of organic and conventionally produced tomatoes with higher quality and antioxidant content. J Sci Food Agric. 2010;90:2548–55.
Article
PubMed
Google Scholar
Bergougnoux V. The history of tomato: from domestication to biopharming. Biotechnol Adv. 2014;32:170–89.
Article
CAS
PubMed
Google Scholar
Kimura S, Sinha N. Tomato (Solanum lycopersicum): a model fruit-bearing crop. Cold Spring Harb Protoc. 2008. doi:10.1101/pdb.emo105.
Google Scholar
Gong P, Zhang J, Li H, Yang C, Zhang C, Zhang X, Khurram Z, Zhang Y, Wang T, Fei Z, et al. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. J Exp Bot. 2010;61:3563–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campos JF, Cara B, Perez-Martin F, Pineda B, Egea I, Flores FB, Fernandez-Garcia N, Capel J, Moreno V, Angosto T, et al. The tomato mutant ars1 (altered response to salt stress 1) identifies an R1-type MYB transcription factor involved in stomatal closure under salt acclimation. Plant Biotechnol J. 2015;14:1345–56.
Article
PubMed
Google Scholar
Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L, et al. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol. 2007;63:591–608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kosmala A, Perlikowski D, Pawlowicz I, Rapacz M. Changes in the chloroplast proteome following water deficit and subsequent watering in a high- and a low-drought-tolerant genotype of Festuca arundinacea. J Exp Bot. 2012;63:6161–72.
Article
CAS
PubMed
Google Scholar
Gargallo-Garriga A, Sardans J, Perez-Trujillo M, Rivas-Ubach A, Oravec M, Vecerova K, Urban O, Jentsch A, Kreyling J, Beierkuhnlein C, et al. Opposite metabolic responses of shoots and roots to drought. Sci Rep. 2014;4:6829.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghosh D, Xu J. Abiotic stress responses in plant roots: a proteomics perspective. Front Plant Sci. 2014;5:6.
Article
PubMed
PubMed Central
Google Scholar
Perlikowski D, Kosmala A, Rapacz M, Koscielniak J, Pawłowicz I, Zwierzykowski Z. Influence of short-term drought conditions and subsequent re-watering on the physiology and proteome of Lolium multiflorum/Festuca arundinacea introgression forms, with contrasting levels of tolerance to long-term drought. Plant Biol. 2014;16:385–94.
Article
CAS
PubMed
Google Scholar
Cheng Z, Dong K, Ge P, Bian Y, Dong L, Deng X, Li X, Yan Y. Identification of leaf proteins differentially accumulated between wheat cultivars distinct in their levels of drought tolerance. PLoS One. 2015;10:e0125302.
Article
PubMed
PubMed Central
Google Scholar
Iovieno P, Punzo P, Guida G, Mistretta C, Van Oosten MJ, Nurcato R, Bostan H, Colantuono C, Costa A, Bagnaresi P, et al. Transcriptomic changes drive physiological responses to progressive drought stress and rehydration in tomato. Front Plant Sci. 2016;7:371.
Article
PubMed
PubMed Central
Google Scholar
Alam I, Sharmin SA, Kim K-H, Yang JK, Choi MS, Lee B-H. Proteome analysis of soybean roots subjected to short-term drought stress. Plant Soil. 2010;333:491–505.
Article
CAS
Google Scholar
Kosová K, Vítámvás P, Prasil IT, Renaut J. Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J Proteomics. 2011;74:1301–22.
Article
PubMed
Google Scholar
Vitamvas P, Urban MO, Skodacek Z, Kosova K, Pitelkova I, Vitamvas J, Renaut J, Prasil IT. Quantitative analysis of proteome extracted from barley crowns grown under different drought conditions. Front Plant Sci. 2015;6:479.
Article
PubMed
PubMed Central
Google Scholar
Zhou S, Palmer M, Zhou J, Bhatti S, Howe KJ, Fish T, Thannhauser TW. Differential root proteome expression in tomato genotypes with contrasting drought tolerance exposed to dehydration. J Amer Soc Hort Sci. 2013;138:131–41.
Google Scholar
Petridis A, Therios I, Samouris G, Koundouras S, Giannakoula A. Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiol Biochem. 2012;60:1–11.
Article
CAS
PubMed
Google Scholar
Luna MC, Bekhradi F, Ferreres F, Jordan MJ, Delshad M, Gil MI. Effect of water stress and storage time on anthocyanins and other phenolics of different genotypes of fresh sweet basil. J Agric Food Chem. 2015;63:9223–31.
Article
CAS
PubMed
Google Scholar
Claussen W. Proline as a measure of stress in tomato plants. Plant Sci. 2005;168:241–8.
Article
CAS
Google Scholar
Lichtenthaler H. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 1987;148:350–82.
Article
CAS
Google Scholar
Scotti N, Sannino L, Idoine A, Hamman P, De Stradis A, Giorio P, Maréchal-Drouard L, Bock R, Cardi T. The HIV-1 Pr55gag polyprotein binds to plastidial membranes and leads to severe impairment of chloroplast biogenesis and seedling lethality in transplastomic tobacco plants. Transgenic Res. 2015;24:319–31.
Article
CAS
PubMed
Google Scholar
Salvi D, Rolland N, Joyard J, Ferro M. Purification and proteomic analysis of chloroplasts and their sub-organellar compartments. Methods Mol Biol. 2008;432:19–36.
Article
CAS
PubMed
Google Scholar
Fan P, Wang X, Kuang T, Li Y. An efficient method for the extraction of chloroplast proteins compatible for 2-DE and MS analysis. Electrophoresis. 2009;30:3024–33.
Article
CAS
PubMed
Google Scholar
Scippa GS, Rocco M, Ialicicco M, Trupiano D, Viscosi V, Di Michele M, Arena S, Chiatante D, Scaloni A. The proteome of lentil (Lens culinaris Medik.) seeds: discriminating between landraces. Electrophoresis. 2010;31:497–506.
Article
CAS
PubMed
Google Scholar
Petersen K, Bock R. High-level expression of a suite of thermostable cell wall-degrading enzymes from the chloroplast genome. Plant Mol Biol. 2011;76:311–21.
Article
CAS
PubMed
Google Scholar
Sol Genomics Network. https://solgenomics.net. Accessed Jan 2015.
The Arabidopsis Information Resource. www.arabidopsis.org. Accessed Jan 2015.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Galili G, Sengupta-Gopalan C, Ceriotti A. The endoplasmic reticulum of plant cells and its role in protein maturation and biogenesis of oil bodies. Plant Mol Biol. 1998;38:1–29.
Article
CAS
PubMed
Google Scholar
Peltier JB, Ripoll DR, Friso G, Rudella A, Cai Y, Ytterberg J, Giacomelli L, Pillardy J, van Wijk KJ. Clp protease complexes from photosynthetic and non-photosynthetic plastids and mitochondria of plants, their predicted three-dimensional structures, and functional implications. J Biol Chem. 2004;279:4768–81.
Article
CAS
PubMed
Google Scholar
Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, et al. Analysis of 1.9Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature. 1998;391:485–8.
Article
CAS
PubMed
Google Scholar
Pogson BJ, Woo NS, Forster B, Small ID. Plastid signalling to the nucleus and beyond. Trends Plant Sci. 2008;13:602–9.
Article
CAS
PubMed
Google Scholar
Jarvis P, Lopez-Juez E. Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol. 2013;14:787–802.
Article
CAS
PubMed
Google Scholar
Tiller N, Bock R. The translational apparatus of plastids and its role in plant development. Mol Plant. 2014;7:1105–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang ZW, Zhang GC, Zhu F, Zhang DW, Yuan S. The roles of tetrapyrroles in plastid retrograde signaling and tolerance to environmental stresses. Planta. 2015;242:1263–76.
Article
CAS
PubMed
Google Scholar
Estavillo GM, Crisp PA, Pornsiriwong W, Wirtz M, Collinge D, Carrie C, Giraud E, Whelan J, David P, Javot H, et al. Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis. Plant Cell. 2011;23:3992–4012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koh J, Chen G, Yoo MJ, Zhu N, Dufresne D, Erickson JE, Shao H, Chen S. Comparative proteomic analysis of Brassica napus in response to drought stress. J Proteome Res. 2015;14:3068–81.
Article
CAS
PubMed
Google Scholar
Hundertmark M, Hincha DK. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics. 2008;9:118–39.
Article
PubMed
PubMed Central
Google Scholar
Kang Y, Han Y, Torres-Jerez I, Wang M, Tang Y, Monteros M, Udvardi M. System responses to long-term drought and re-watering of two contrasting alfalfa varieties. Plant J. 2011;68:871–89.
Article
CAS
PubMed
Google Scholar
Ashraf M, Harris PJC. Photosynthesis under stressful environments: an overview. Photosynthetica. 2013;51:163–90.
Article
CAS
Google Scholar
Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci. 2015;72:673–89.
Article
CAS
PubMed
Google Scholar
Ruban AV, Berera R, Ilioaia C, van Stokkum IH, Kennis JT, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature. 2007;450:575–8.
Article
CAS
PubMed
Google Scholar
Chen D, Wang S, Cao B, Cao D, Leng G, Li H, Yin L, Shan L, Deng X. Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings. Front Plant Sci. 2016;6:1241.
PubMed
PubMed Central
Google Scholar
Biswal B, Joshi PN, Raval MK, Biswal UC. Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation. Curr Sci. 2011;101:47–56.
CAS
Google Scholar
Gao S, Niu J, Chen W, Wang G, Xie X, Pan G, Gu W, Zhu D. The physiological links of the increased photosystem II activity in moderately desiccated Porphyra haitanensis (Bangiales, Rhodophyta) to the cyclic electron flow during desiccation and re-hydration. Photosynth Res. 2013;116:45–54.
Article
CAS
PubMed
Google Scholar
Zivcak M, Brestic M, Balatova Z, Drevenakova P, Olsovska K, Kalaji HM, Yang X, Allakhverdiev SI. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res. 2013;117:529–46.
Article
CAS
PubMed
Google Scholar
Huang W, Yang YJ, Hu H, Zhang SB. Different roles of cyclic electron flow around photosystem I under sub-saturating and saturating light intensities in tobacco leaves. Front Plant Sci. 2015;6:923.
PubMed
PubMed Central
Google Scholar
Shikanai T. Regulatory network of proton motive force: contribution of cyclic electron transport around photosystem I. Photosynth Res. 2016;129:253–60.
Article
CAS
PubMed
Google Scholar
Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature. 1999;401:914–7.
Article
CAS
Google Scholar
Kanazawa A, Kramer DM. In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proc Natl Acad Sci U S A. 2002;99:12789–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avenson TJ, Cruz JA, Kramer DM. Modulation of energy-dependent quenching of excitons in antennae of higher plants. Proc Natl Acad Sci U S A. 2004;101:5530–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohzuma K, Cruz JA, Akashi K, Hoshiyasu S, Munekage YN, Yokota A, Kramer DM. The long-term responses of the photosynthetic proton circuit to drought. Plant Cell Environ. 2009;32:209–19.
Article
CAS
PubMed
Google Scholar
Park HJ, Lee SS, You YN, Yoon DH, Kim BG, Ahn JC, Cho HS. A rice immunophilin gene, OsFKBP16-3, confers tolerance to environmental stress in Arabidopsis and rice. Int J Mol Sci. 2013;14:5899–919.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta R, Mould RM, He Z, Luan S. A chloroplast FKBP interacts with and affects the accumulation of Rieske subunit of cytochrome bf complex. Proc Natl Acad Sci U S A. 2002;99:15806–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kosova K, Vitamvas P, Urban MO, Klima M, Roy A, Prasil IT. Biological networks underlying abiotic stress tolerance in temperate crops- a Proteomic perspective. Int J Mol Sci. 2015;16:20913–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bahrman N, Le Gouis J, Negroni L, Amilhat L, Leroy P, Laine AL, Jaminon O. Differential protein expression assessed by two-dimensional gel electrophoresis for two wheat varieties grown at four nitrogen levels. Proteomics. 2004;4:709–19.
Article
CAS
PubMed
Google Scholar
Hanke GT, Holtgrefe S, Konig N, Strodtkotter I, Voss I, Scheibe R. Use of transgenic plants to uncover strategies for maintenance of redox homeostasis during photosynthesis. In: Adv Bot Res. Oxidative Stress and Redox Regulation in Plants. 2009. p. 207–51.
Google Scholar
Heyno E, Innocenti G, Lemaire SD, Issakidis-Bourguet E, Krieger-Liszkay A. Putative role of the malate valve enzyme NADP-malate dehydrogenase in H2O2 signalling in Arabidopsis. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130228.
Article
PubMed
PubMed Central
Google Scholar
Hebbelmann I, Selinski J, Wehmeyer C, Goss T, Voss I, Mulo P, Kangasjarvi S, Aro EM, Oelze ML, Dietz KJ, et al. Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase. J Exp Bot. 2012;63:1445–59.
Article
CAS
PubMed
Google Scholar
Galili G. The aspartate-family pathway of plants. Plant Signaling Behav. 2011;6:192–5.
Article
CAS
Google Scholar
Pires MV, Pereira Junior AA, Medeiros DB, Daloso DM, Pham PA, Barros KA, Engqvist MKM, Florian A, Krahnert I, Maurino VG, et al. The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis. Plant Cell Environ. 2016;3:1304–19.
Article
Google Scholar
Harada E, Choi Y-E, Tsuchisaka A, Obata H, Sano H. Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. J Plant Physiol. 2001;158:655–61.
Article
CAS
Google Scholar
Anjum NA, Gill R, Kaushik M, Hasanuzzaman M, Pereira E, Ahmad I, Tuteja N, Gill SS. ATP-sulfurylase, sulfur-compounds, and plant stress tolerance. Front Plant Sci. 2015;6:210.
PubMed
PubMed Central
Google Scholar
Langenkämper G, Manac’h N, Broin M, Cuiné S, Becuwe N, Kuntz M, Rey P. Accumulation of plastid lipid-associated proteins (fibrillin/CDSP34) upon oxidative stress, ageing and biotic stress in Solanaceae and in response to drought in other species. J Exp Bot. 2001;52:1545–54.
Article
PubMed
Google Scholar
Thipyapong P, Melkonian J, Wolfe DW, Steffens JC. Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Sci. 2004;167:693–703.
Article
CAS
Google Scholar
Uhrig RG, Ng KKS, Moorhead GBG. PII in higher plants: a modern role for an ancient protein. Trends Plant Sci. 2009;14:505–11.
Article
CAS
PubMed
Google Scholar
Miflin BJ, Habash DZ. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot. 2002;53:979–87.
Article
CAS
PubMed
Google Scholar
Hsieh MH, Goodman HM. The Arabidopsis IspH homolog is involved in the plastid nonmevalonate pathway of isoprenoid biosynthesis. Plant Physiol. 2005;138:641–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. 1999;19:1720–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 2007;50:347–63.
Article
CAS
PubMed
Google Scholar
Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ. An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One. 2007;2:e718.
Article
PubMed
PubMed Central
Google Scholar
Chan KX, Crisp PA, Estavillo GM, Pogson BJ. Chloroplast-to-nucleus communication: current knowledge, experimental strategies and relationship to drought stress signaling. Plant Signaling Behav. 2010;5:1575–82.
Article
CAS
Google Scholar
Bobik K, Burch-Smith TM. Chloroplast signaling within, between and beyond cells. Front Plant Sci. 2015;6:781.
Article
PubMed
PubMed Central
Google Scholar
Chan KX, Phua SY, Crisp P, McQuinn R, Pogson BJ. Learning the languages of the chloroplast: retrograde signaling and beyond. Annu Rev Plant Biol. 2016;67:5.1-5.29.
Article
Google Scholar
Yamburenko MV, Zubo YO, Vankova R, Kusnetsov VV, Kulaeva ON, Borner T. Abscisic acid represses the transcription of chloroplast genes. J Exp Bot. 2013;64:4491–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamburenko MV, Zubo YO, Borner T. Abscisic acid affects transcription of chloroplast genes via protein phosphatase 2C-dependent activation of nuclear genes: repression by guanosine-3-5-bisdiphosphate and activation by sigma factor 5. Plant J. 2015;82:1030–41.
Article
CAS
PubMed
Google Scholar