Gustafson FG. The cause of natural parthenocarpy. Am J Bot. 1939;26:135–8.
Article
Google Scholar
Fabrice RB, Michel D, Patrick G. Less is better: new approaches for seedless fruit production. Biotopics. 2000;18:233–42.
Google Scholar
Kim IS, Okubo H, Fujieda K. Genetic and hormonal control of parthenocarpy in cucumber (Cucumis sativus L.). J Fat Agr. 1992;36:173–81.
CAS
Google Scholar
Kim IS, Okubo H, Fujieda K. Endogenous levels of IAA in relation to parthenocarpy in cucumber (Cucumis sativus L.). Sci Hortic. 1992;52:1–8.
Article
CAS
Google Scholar
Boonkorkaew P, Hikosaka S, Sugiyama N. Effect of pollination on cell division, cell enlargement, and endogenous hormones in fruit development in a gynoecious cucumber. Sci Hortic. 2008;116:1–7.
Article
CAS
Google Scholar
Cantliffe D. Parthenocarpy in the cucumber induced by some plant growth-regulating chemicals. Can J Plant Sci. 1972;52:781–5.
Article
CAS
Google Scholar
Quebedeaux B, Beyer E. Chemically-induced parthenocarpy cucumber by a new inhibitor of auxin transport. HortSci. 1972;7:474–6.
CAS
Google Scholar
Fu FQ, Mao WH, Shi K, Zhou YH, Asami T, Yu JQ. A role of brassinosteroids in early fruit development in cucumber. J Exp Bot. 2008;59:2299–308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim I, Okubo H, Fujieda K. Studies on parthenocarpy in Cucumis sativus L.-(4)-Effects of exogenous growth regulators on induction of parthenocarpy and endogenous hormone levels in cucumber ovaries. J Kor Soc Hortic Sci. 1994;35:187–96.
CAS
Google Scholar
Kim I, Yoo K, Fujieda K, Okubo H. Studies on parthenocarpy in Cucumis sativus L.-(5)-Influence of exogenous plant growth regulators on growth and diffusible IAA level of cucumber ovaries. J Kor Soc Hortic Sci. 1994;35:196–200.
CAS
Google Scholar
Yasuda S. Parthenocarpy induced by the stimulus of pollination in some plants of the Solanaceae. Agric Hortic. 1930;5:287–94.
Google Scholar
Yasuda S. Parthenocarpy induced by the stimulation of pollination in some plants of the Cucurbitaceae. Agric Hortic. 1935;10:1385–90.
Google Scholar
Gustafson FG. Parthenocarpy induced by pollen extracts. Am J Bot. 1937;24:102–7.
Article
CAS
Google Scholar
Gustafson FG. Parthenocarpy: natural and artificial. Bot Rev. 1942;8:599–654.
Article
CAS
Google Scholar
Yin Z, Malinowski R, Ziolkowska A, Sommer H, Plcader W, Malepszy S. The DefH9-iaaM-containing construct efficiently induces parthenocarpy in cucumber. Cell Mol Biol Lett. 2006;11:279–90.
Article
CAS
PubMed
Google Scholar
Rotino GL, Perri E, Zottini M, Sommer H, Spena A. Genetic engineering of parthenocarpic plants. Nat Biotechnol. 1997;15:1398–401.
Article
CAS
PubMed
Google Scholar
Ren Z, Li Z, Miao Q, Yang Y, Deng W, Hao Y. The auxin receptor homologue in Solanum lycopersicum stimulates tomato fruit set and leaf morphogenesis. J Exp Bot. 2011;62:2815–26.
Article
CAS
PubMed
Google Scholar
De Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen WH. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J. 2009;57:160–70.
Article
PubMed
Google Scholar
Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, et al. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell. 2005;17:2676–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beraldi D, Picarella ME, Soressi GP, Mazzucato A. Fine mapping of the parthenocarpic fruit (pat) mutation in tomato. Theor Appl Genet. 2004;2:209–16.
Article
Google Scholar
Gorguet B, Eggink PM, Ocana J, Tiwari A, Schipper D, Finkers R, et al. Mapping and characterization of novel parthenocarpy QTLs in tomato. Theor Appl Genet. 2008;116:755–67.
Article
PubMed
PubMed Central
Google Scholar
Miyatake K, Saito T, Negoro S, Yamaguchi H, Nunome T, Ohyama A, et al. Development of selective markers linked to a major QTL for parthenocarpy in eggplant (Solanum melongena L.). Theor Appl Genet. 2012;8:1403–13.
Article
Google Scholar
Hawthorn LR, Wellington R. Geneva, a greenhouse cucumber that develops fruit without pollination. New York State Agricultural Experiment Station. 1930;2:3–11.
Juldasheva L. Inheritance of the tendency towards parthenocarpy in cucumbers. Byull Vsesoyuznogo Ordena Lenina Inst Rastenievodstva Imeni NI Vavilova. 1973;32:58–59.
Meshcherov E, Juldasheva L. Parthenocarpy in cucumber. Trudy Prikl Bot Genet Selek. 1974;51:204–13.
Google Scholar
Kvasnikov BV, Rogova NT, Tarakanova SI, Ignatov SI. Methods of breeding vegetable crops under the covered ground. Trudy Prikl Bot Genet Selek. 1970;42:45–57.
Google Scholar
Pike LM, Peterson CE. Inheritance of parthenocarpy in the cucumber (Cucumis sativus L.). Euphytica. 1969;18:101–5.
Google Scholar
Ponti OMB, Garretsen F. Inheritance of parthenocarpy in pickling cucumbers (Cucumis sativus L.) and linkage with other characters. Euphytica. 1976;25:633–42.
Article
Google Scholar
Shawaf EI, Baker L. Inheritance of parthenocarpic yield in gynoecious pickling cucumber for once-over mechanical harvest by diallel analysis of six gynoecious lines. J Am Soc Hortic Sci. 1981;106:359–64.
Google Scholar
Shawaf EI, Baker L. Combining ability and genetic variances of G × H F1 hybrids for parthenocarpic yield in gynoecious pickling cucumber from once-over mechanical harvest. J Am Soc Hortic Sci. 1981;106:365–70.
Google Scholar
Sun ZY, Lower RL, Staub JE. Analysis of generation means and components of variance for parthenocarpy in cucumber (Cucumis sativus L.). Plant Breed. 2006;125:277–80.
Article
Google Scholar
Yan LY, Lou LN, Lou QF, Chen JF. Inheritance of parthenocarpy in gynoecious cucumber. Acta Horticulturae Sinica. 2008;35:1441–6.
Google Scholar
Sun Z, Staub J, Chung S, Lower R. Identification and comparative analysis of quantitative trait loci associated with parthenocarpy in processing cucumber. Plant Breed. 2006;125:281–7.
Article
CAS
Google Scholar
Huang XH, Feng Q, Qian Q, Zhao Q, Wang L, Wang AH, et al. High-throughput genotyping by whole-genome resequencing. Genome Res. 2009;19:1068–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, et al. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 2013;74:174–83.
Article
CAS
PubMed
Google Scholar
Cho H, Ryu H, Rho S, Hill K, Smith S, Audenaert D, et al. A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development. Nat Cell Biol. 2014;16:66–76.
Article
CAS
PubMed
Google Scholar
Kim J, Lee HW. Direct activation of EXPANSIN14 by LBD18 in the gene regulatory network of lateral root formation in Arabidopsis. Plant Signal Behav. 2013. doi:10.4161/psb.22979.
Google Scholar
Kiba T, Naitou T, Koizumi N, Yamashino T, Sakakibara H, Mizuno T. Combinatorial microarray analysis revealing arabidopsis genes implicated in cytokinin responses through the His→Asp phosphorelay circuitry. Plant Cell Physiol. 2005;46:339–55.
Article
CAS
Google Scholar
Takatoshi KA, Hitoshi S, Takeshi M. Arabidopsis response regulator, ARR22, ectopic expression of which results in phenotypes similar to the wol cytokinin-receptor Mutant. Plant Cell Physiol. 2004;45:1063–77.
Article
Google Scholar
Wilson RL, Kim H, Bakshi A, Binder BM. The ethylene receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 have contrasting roles in seed germination of Arabidopsis thaliana during salt stress. Plant Physiol. 2014;165:1353–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson RL, Bakshi A, Binder BM. Loss of the ETR1 ethylene receptor reduces the inhibitory effect of far-red light and darkness on seed germination of Arabidopsis thaliana. Front Plant Sci. 2014;5:433.
Article
PubMed
PubMed Central
Google Scholar
Shakeel SN, Gao Z, Amir M, Chen YF, Rai MI, Haq NU, et al. Ethylene regulates levels of ethylene receptor/ctr1 signaling complexes in Arabidopsis thaliana. J Biol Chem. 2015;290:12415–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Wu Z, Cui L, Zhang T, Guo Q, Xu J, et al. Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone crosstalk in cucumber (Cucumis sativus L.). Plant Cell Physiol. 2014;55:1325–42.
Article
CAS
PubMed
Google Scholar
Staub JE, Chung SM, Fazio G. Conformity and genetic relatedness estimation in crop species having a narrow genetic base: the case of cucumber (Cucumis sativus L.). Plant Breed. 2005;124:44–53.
Article
CAS
Google Scholar
Yuan XJ, Pan JS, Cai R, Guan Y, Liu LZ, Zhang WW, et al. Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica. 2008;164:473–91.
Article
CAS
Google Scholar
Weng Y, Johnson S, Staub JE, Huang S. An extended intervarietal microsatellite linkage map of cucumber, Cucumis sativus L. HortSci. 2010;45:882–6.
Google Scholar
Miao H, Zhang S, Wang X, Zhang Z, Li M, Mu S, et al. A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica. 2011;182:167–76.
Article
Google Scholar
Li HH, Hearne S, Bänziger M, Li Z, Wang J. Statistical properties of QTL linkage mapping in biparental genetic populations. Heredity. 2010;105:257–67.
Article
CAS
PubMed
Google Scholar
Li HH, Zhang LY, Wang JK. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin. 2010;36:918–31.
Article
Google Scholar
Kikuchi K, Honda I, Matsuo S, Fukuda M, Saito T. Stability of fruit set of newly selected parthenocarpic eggplant lines. Sci Hortic. 2008;115:111–6.
Article
Google Scholar
Pandolfini T, Molesini B, Spena A. Parthenocarpy in crop plants. Ann Plant Rev. 2009;38:326–45.
Google Scholar
Goetz M, Vivian-Smith A, Johnson SD, Koltunow AM. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell. 2006;18:1873–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goetz M, Hooper LC, Johnson SD, Rodrigues JC, Vivian-Smith A, Koltunow AM. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol. 2007;145:351–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding J, Chen B, Xia X, Mao W, Shi K, Zhou Y, Yu J. Cytokinin-induced parthenocarpic fruit development in tomato is partly dependent on enhanced gibberellin and auxin biosynthesis. PLoS One. 2013. doi:10.1371/journal.pone.0070080.
Google Scholar
Hayata Y, Niimi Y, Iwasaki N. Synthetic cytokinin-1-(2 = chloro = 4 = pyridyl)-3-phenylurea (CPPU)-promotes fruit set and induces parthenocarpy in watermelon. J Am Soc Hortic Sci. 1995;120:997–1000.
CAS
Google Scholar
Martínez C, Manzano S, Megías Z, Garrido D, Picó B, Jamilena M. Involvement of ethylene biosynthesis and signalling in fruit set and early fruit development in zucchini squash (Cucurbita pepo L.). BMC Plant Biol. 2013; doi:10.1186/1471-2229-13-139.
Gamble RL, Qu X, Schaller GE. Mutational analysis of the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiol. 2002;128:1428–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall AE. Analysis of combinatorial loss-of-function mutants in the arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell. 2003;15:2032–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Resnick JS, Wen CK, Shockey JA, Chang C. REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci U S A. 2006;103:7917–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and samtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
Google Scholar
Cavagnaro PF, Senalik DA, Yang L, Simon PW, Harkins TT, Kodira CD, et al. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics. 2010;11:1471–2164.
Article
Google Scholar
Ren Y, Zhang Z, Liu J, Staub JE, Han Y, Cheng Z, et al. An integrated genetic and cytogenetic map of the cucumber genome. PloS One .2009; doi:10.1371 /journal.pone.0005795.t002.
Wang S, Basten CJ, Zeng ZB. Windows QTL cartographer 2.5. Raleigh, NC: Department of Statistics, North Carolina State University; 2007. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm.
Google Scholar