Ainsworth EA, Yendrek CR, Skoneczka JA, Long SP. Accelerating yield potential in soybean: potential targets for biotechnological improvement. Plant Cell Environ. 2011;35:38–52.
Article
PubMed
Google Scholar
Aliyev JA, Mirzoyev RS. Photosynthesis and productivity of Soybean [Glycine max (L.) Merr.]. Proc ANAS. 2010;65(5-6):60–70.
Google Scholar
Liang Y, Zhang K, Zhao L, Liu B, Meng Q, Tian J, Zhao S. Identification of chromosome regions conferring dry matter accumulation and photosynthesis in wheat (Triticum aestivum L.). Euphytica. 2010;171(1):145–56.
Article
CAS
Google Scholar
Sinclair TR, Purcell LC, Sneller CH. Crop transformation and the challenge to increase yield potential. Trends Plant Sci. 2004;9(2):70–5.
Article
CAS
PubMed
Google Scholar
Whitmarsh J, Govindjee. The Photosynthetic Process. In Concepts in Photobiology: Photosynthesis and Photomorphogenesis. Singhal GS, Renger G, Sopory SK, Irrgang KD, Govindjee, editors. Narosa Publishers/New Delhi; and Kluwer Academic/Dordrecht Publishers; 1999; pp. 11-51.
Huang WD, Lin KH, Hsu MH, Huang MY, Yang ZW, Chao PY, Yang CM. Eliminating interference by anthocyanin in chlorophyll estimation of sweet potato (Ipomoea batatas L.) leaves. Bot Stud. 2014;55:11.
Article
Google Scholar
Gitelson AA, Peng Y, Arkebauer TJ, Schepers J. Relationships between gross primary production, green LAI, and canopy chlorophyll content in maize: Implications for remote sensing of primary production. Remote Sens Environ. 2014;144:62–72.
Article
Google Scholar
Samet JS, Sinclair TR. Leaf senescence and abscisic acid in leaves of field-grown soybean. Plant Physiol. 1980;66:1164–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu G, Yang C, Xu K, Zhang Z, Li D, Wu Z, Chen Z. Development of yield and some photosynthetic characteristics during 82 years of genetic improvement of soybean genotypes in northeast China. Aust J Crop Sci. 2012;6(10):1416–22.
CAS
Google Scholar
Li Q, Lu Y, Shi Y, Wang T, Ni K, Xu L, Liu S, Wang L, Xiong Q, Giesy JP. Combined effects of cadmium and fluoranthene on germination, growth and photosynthesis of soybean seedlings. J Environ Sci. 2013;25(9):1936–46.
Article
CAS
Google Scholar
Ma BL, Morrison MJ, Voldeng HD. Leaf greenness and photosynthetic rates in soybean. Crop Sci. 1995;35:1411–4.
Article
Google Scholar
Buttery BR, Buzzell RI, Findlay WI. Relationships among photosynthetic rate, bean yield and other characters in field-grown cultivars of soybean. Can J Plant Sci. 1981;61(2):190–7.
Article
Google Scholar
Hesketh JD, Ogren WL, Hageman ME, Peters DB. Correlations among leaf CO2-exchange rates, areas and enzyme activities among soybean cultivars. Photosynthetic Res. 1981;2(1):21–30.
Article
CAS
Google Scholar
Gausman HW, Burke JJ, Quisenberry JE. Use of leaf optical properties in plant stress research. Am Chem Soc Symp Ser. 1984;257:215–33.
CAS
Google Scholar
Blackburn GA. Wavelet decomposition of hyperspectral data: A novel approach to quantifying pigment concentrations in vegetation. Int J Remote Sens. 2007;28:2831–55.
Article
Google Scholar
Carter GA, Knapp AK. Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. Am J Bot. 2001;88:677–84.
Article
CAS
PubMed
Google Scholar
Singh SK, Hoyos-Villegas V, Ray JD, Smith JR, Fritschi FB. Quantification of leaf pigments in soybean (Glycine max (L.) Merr.) based on wavelet decomposition of hyperspectral features. Field Crop Res. 2013;149:20–32.
Article
Google Scholar
Chappelle EW, Kim MS, McMurtrey III JE. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sens Environ. 1992;39(3):239–47.
Article
Google Scholar
Peñuelas J, Filella I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci. 1998;3:151–6.
Article
Google Scholar
Roelofsen HD, van Bodegom PM, Kooistra L, Witte JP. Predicting leaf traits of herbaceous species from their spectral characteristics. Ecol Evol. 2014;4(6):706–19.
Article
PubMed
PubMed Central
Google Scholar
Ryu C, Suguri M, Umeda M. Multivariate analysis of nitrogen content for rice at the heading stage using reflectance of airborne hyperspectral remote sensing. Field Crop Res. 2011;122:214–24.
Article
Google Scholar
Sims DA, Gamon JA. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ. 2002;81(2-3):337–54.
Article
Google Scholar
Vigneau N, Ecarnot M, Rabatel G, Roumet P. Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in wheat. Field Crop Res. 2011;122:25–31.
Article
Google Scholar
Andrade-Sanchez P, Gore MA, Heun JT, Thorp KR, Carmo-Silva AE, French AN. Development and evaluation of a field-based high-throughput phenotyping platform. Funct Plant Biol. 2014;41:68–79.
Article
Google Scholar
White JW, Andrade-Sanchez P, Gore MA, Bronson KF, Coffelt TA, Conley MM, Feldmann KA, French AN, Heun JT, Hunsaker DJ, et al. Field-based phenomics for plant genetics research. Field Crop Res. 2012;133:101–12.
Article
Google Scholar
Daughtry CST, Walthall CL, Kim MS, Brown de Colstoun E, McMurtrey III JE. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ. 2000;74:229–39.
Article
Google Scholar
Christenson BS, Schapaugh WT, An N, Price KP, Fritz AK. Characterizing changes in soybean spectral response curves with breeding advancements. Crop Sci. 2014;54:1585–97.
Article
Google Scholar
Fritschi F, Ray JD. Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. Photosynthetica. 2007;45(1):92–8.
Article
CAS
Google Scholar
Malik MFA. Evaluation of Genetic Diversity in Soybean (Glycine max (L.) Genotypes Based on Agronomic and Biochemical Traits. Islamabad: Quaid-i-azam University; 2011.
Google Scholar
Zhang H, Zhang D, Han S, Zhang X, Yu D. Identification and gene mapping of a soybean chlorophyll-deficient mutant. Plant Breed. 2011;130:133–8.
Article
CAS
Google Scholar
Campbell BW, Mani D, Curtin SJ, Slattery RA, Michno JM, Ort DR, Schaus PJ, Palmer RG, Orf JH, Stupar RM. Identical substitutions in magnesium chelatase paralogs result in chlorophyll-deficient soybean mutants. G3. 2015;5(1):123–31.
CAS
Google Scholar
Reed S, Atkinson T, Gorecki C, Espinosa K, Przybylski S, Goggi AS, Palmer RG, Sandhu D. Candidate gene identification for a lethal chlorophyll-deficient mutant in soybean. Agronomy. 2014;4(4):462–9.
Article
CAS
Google Scholar
Li GJ, Li HN, Cheng LG, Zhang YM. QTL analysis for dynamic expression of chlorophyll content in soybean (Glycine max L. Merr.). Acta Agronomica Sin. 2010;36(2):242–8.
CAS
Google Scholar
Hao D, Chao M, Yin Z, Yu D. Genome-wide association analysis detecting significant single nucleotide polymorphisms for chlorophyll and chlorophyll fluorescence parameters in soybean (Glycine max) landraces. Euphytica. 2012b;186:919-931.
Boote KJ, Gallaher RN, Robertson WK, Hinson K, Hammond LC. Effect of foliar fertilization on photosynthesis, leaf nutrition, and yield of soybean. Agron J. 1978;70:787–91.
Article
CAS
Google Scholar
Wittenbach VA, Ackerson RC, Giaquinta RT, Hebert RR. Changes in photosynthesis, ribulose bisphosphate-carboxylase, proteolytic activity, and ultrastructure of soybean leaves during senescence. Crop Sci. 1980;20:225–31.
Article
CAS
Google Scholar
Juenger T, Mckay JK, Hausmann N, Keurentjes J, Sen S, Stowe K, Dawson T, Simms E, Richards J. Identification and characterization of QTL underlying wholeplant physiology in Arabidopsis thaliana: d13C, stomatal conductance and transpiration efficiency. Plant Cell Environ. 2005;28:1–12.
Article
Google Scholar
Vreugdenhil D, Koornneef M, Sergeeva L. Use of QTL analysis in physiological research. Russ J Plant Physiol. 2007;54:15–21.
Article
Google Scholar
Adachi S, Tsuru Y, Nito N, Murata K, Yamamoto T, Ebitani T, Ookawa T, Hirasawa T. Identification and characterization of genomic regions on chromosomes 4 and 8 that control the rate of photosynthesis in rice leaves. J Exp Bot. 2011;62:1927–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teng S, Qian Q, Zeng D, Kunihiro Y, Fujimoto K, Huang D, Zhu L. QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.). Euphytica. 2004;135:1–7.
Article
CAS
Google Scholar
Zhao X, Xu J, Zhao M, Lafitte R, Zhu L, Fu B, Gao Y, Li Z. QTLs affecting morphophysiological traits related to drought tolerance detected in overlapping introgression lines of rice (Oryza sativa L.). Plant Sci. 2008;174:618–25.
Article
CAS
Google Scholar
Simon MR. Gene action and heritability for photosynthetic activity in two wheat crosses. Euphytica. 1994;76(3):235–8.
Article
Google Scholar
Rocher J, Prioul J, Lecharny A, Reyss A, Joussaume M. Genetic variability in carbon fixation, sucrose-P-synthase and ADP glucose pyrophosphorylase in maize plants of differing growth rate. Plant Physiol. 1989;89(2):416–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hobbs SLA, Mahon JD. Inheritance of chlorophyll content, ribulose-l,5-bisphosphate carboxylase activity, and stomatal resistance in Peas. Crop Sci. 1985;25:1031–4.
Article
CAS
Google Scholar
Jin J, Liu K, Wang G, Mi L, Shen Z, Chen X, Herbert SJ. Agronomic and physiological contributions to the yield improvement of soybean cultivars released from 1950 to 2006 in Northeast China. Field Crop Res. 2010;115:116–23.
Article
Google Scholar
Morrison MJ, Voldeng HD, Cober ER. Physiological changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. Agron J. 1999;91:685–9.
Article
Google Scholar
Koester RP, Nohl BM, Diers BW, Ainsworth EA. Has photosynthetic capacity increased with 80 years of soybean breeding? An examination of historical soybean cultivars, Plant Cell Environ. 2015;39(5):1058–67.
Article
Google Scholar
Koester RP, Skoneczka JA, Cary TR, Diers BW, Ainsworth EA. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies. J Exp Bot. 2014;65(12):3311–21.
Article
PubMed
PubMed Central
Google Scholar
Dhanapal AP, Ray JD, Singh SK, Hoyos-Villegas V, Smith JR, Purcell LC, King CA, Cregan P, Song Q, Fritschi FB. Genome-wide association study (GWAS) of carbon isotope ratio (δ13C) in diverse soybean [Glycine max (L.) Merr.] genotypes. Theor Appl Genet. 2015a, 128:73-91.
Dhanapal AP, Ray JD, Singh SK, Hoyos-Villegas V, Smith JR, Purcell LC, King CA, Fritschi FB. Genome-wide association analysis of diverse soybean genotypes reveals novel markers for Nitrogen derived from atmosphere (Ndfa), nitrogen concentration ([N]) and C/N ratio. Plant Genome. 2015;8(3). doi: 10.3835/plantgenome2014.11.0086.
Fehr WR, Caviness CE, Burmood DT, Pennington JS. Stage of development descriptions for soybeans, Glycine max (L.) Merr. Crop Sci. 1971;11:929–31.
Article
Google Scholar
Lichtenthaler HK. Chlorophylls and carotenoids: pigments of photosynthesis. Methods Enzymol. 1987;148:350–2.
Article
CAS
Google Scholar
Gitelson AA, Viña A, Ciganda V, Rundquist DC, Arkebauer TJ. Remote estimation of canopy chlorophyll content in crops. Geophys Res Lett. 2005;32:L08403.
Article
Google Scholar
Littell RC, Milliken GA, Stroup WW, Wolfinger RD. SAS system for mixed models. Cary: SAS Institute Inc; 1996.
Google Scholar
Piepho HP, Möhring J, Melchinger AE, Büchse A. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica. 2008;161:209–28.
Article
Google Scholar
Holland JB, Nyquist WE, Cervantes-Martinez CT. Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev. 2003;22:9–112.
Google Scholar
Piepho HP, Möhring J. Computing heritability and selection response from unbalanced plant breeding trials. Genetics. 2007;177:1881–8.
Article
PubMed
PubMed Central
Google Scholar
Endelman JB, Jannink JL. Shrinkage estimation of the realized relationship matrix. G3. 2012;2(11):1405–13.
Article
PubMed
PubMed Central
Google Scholar
Pritchard J, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945.
CAS
PubMed
PubMed Central
Google Scholar
Dhanapal AP, Ray JD, Singh SK, Hoyos-Villegas V, Smith JR, Purcell LC, King CA, Cregan P, Song Q, Fritschi F. Association mapping of total carotenoids in diverse soybean genotypes based on leaf extracts and high-throughput canopy spectral reflectance measurements. PLoS One. 2015;10(9):e0137213.
Article
PubMed
PubMed Central
Google Scholar
Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB. Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One. 2013;8:e54985.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu J, Buckler E. Genetic association mapping and genome organization of maize. Curr Opin Biotechnol. 2006;17(2):155–60.
Article
CAS
PubMed
Google Scholar
Zhu C, Gore M, Buckler ES, Jianming Y. Status and prospects of association mapping in plants. Plant Genome. 2008;1:5–20.
Article
CAS
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5.
Article
CAS
PubMed
Google Scholar
Buckler E, Casstevens T, Bradbury P, Zhang Z. Analysis byaSSociation, Evolution and Linkage (TASSEL) Version 2.1. Ithaca: User Manual Cornell University; 2009.
Google Scholar
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100(16):9440–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57(1):289–300.
Google Scholar
Hao D, Cheng H, Yin Z, Cui S, Zhang D, Wang H, Yu D. Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycine max) landraces across multiple environments. Theor Appl Genet. 2012a;124:447-458.
Hwang EY, Song Q, Jia G, Specht JE, Hyten DL, Costa J, Cregan PB. A genome-wide association study of seed protein and oil content in soybean. BMC Genomics. 2014;15:1.
Article
PubMed
PubMed Central
Google Scholar
Zhang J, Song Q, Cregan PB, Nelson RL, Wang X, Wu J, Jiang GL. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genomics. 2015;16:217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng P, Holdsworth W, Ma Y, Coyne CJ, Mazourek M, Grusak MA, Fuchs S, McGee RJ. Association mapping of agronomic and quality traits in USDA pea single-plant collection. Mol Breed. 2015;35:75.
Article
Google Scholar
Wei Z, Zhang G, Du Q, Zhang J, Li B, Zhang D. Association mapping for morphological and physiological traits in Populus simonii. BMC Genet. 2014;15(Supplemental 1):S3.
Article
PubMed
PubMed Central
Google Scholar
Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB et al: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics 2006, 38:203–8.
Article
CAS
PubMed
Google Scholar
Kang YJ, Kim KH, Shim S, Yoon MY, Sun S, Kim MY, Van K, Lee SH. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol. 2012;12:139.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pham AT, Harris DK, Buck J, Hoskins A, Serrano J, Abdel-Haleem H, Cregan P, Song Q, Boerma HR, Li Z. Fine mapping and characterization of candidate genes that control resistance to Cercospora sojina K. Hara in Two Soybean Germplasm Accessions. PLoS One. 2015;10(5):e0126753.
Article
PubMed
PubMed Central
Google Scholar
Ferri CP, Formaggio AR, Schiavinato MA. Narrow band spectral indexes for chlorophyll determination in soybean canopies [Glycine max (L.) Merril]. Braz J Plant Physiol. 2004;16(3):131–6.
Article
CAS
Google Scholar
Willows RD. Chlorophyll synthesis. In: Wise RR, Hoober JK, editors. The Structure and Function of Plastids, Advances in Photosynthesis and Respiration, vol. 23. Dordrecht: Springer; 2006. p. 295–313.
Chapter
Google Scholar
Lake V, Olsson U, Willows RD, Hansson M. ATPase activity of magnesium chelatase subunit I is required to maintain subunit D in vivo. Eur J Biochem. 2004;271:2182–8.
Article
CAS
PubMed
Google Scholar
Fang C, Li C, Li W, Wang Z, Zhou Z, Shen Y, Wu M, Wu Y, Li G, Kong LA, et al. Concerted evolution of D1 and D2 to regulate chlorophyll degradation in soybean. Plant J. 2014;77:700–12.
Article
CAS
PubMed
Google Scholar
Palmer RG, Xu M. Positioning 3 qualitative trait loci on soybean molecular linkage group E. J Heredity. 2008;99:674–8.
Article
CAS
Google Scholar
Espinosa K. Intensifying intrinsic genetic variation in soybean [Glycine max (L.) Merr.] inbred lines. Graduate Theses Dissertations Paper. 2014:13864. http://lib.dr.iastate.edu/etd/13864
Zou JJ, Singh RJ, Hymowitz T. Association of the yellow leaf (y10) mutant to soybean chromosome 3. J Heredity. 2003;94(4):352–5.
Article
CAS
Google Scholar