Scheideler M, Schlaich NL, Fellenberg K, Beissbarth T, Hauser NC, Vingron M, et al. Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays. J Biol Chem. 2002;277:10555–61.
Article
CAS
PubMed
Google Scholar
Ward JL, Forcat S, Beckmann M, Bennett M, Miller SJ, Baker JM, et al. The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv tomato. Plant J. 2010;63:443–57.
Article
CAS
PubMed
Google Scholar
Liu G, Ji Y, Bhuiyan NH, Pilot G, Selvaraj G, Zou J, et al. Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis. Plant Cell. 2010;22:3845–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cecchini NM, Monteoliva MI, Alvarez ME. Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Plant Physiol. 2011;155:1947–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao H, Glazebrook J, Clarke JD, Volko S, Dong X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. CELL. 1997;88:57–63.
Article
CAS
PubMed
Google Scholar
Nakayama A, Fukushima S, Goto S, Matsushita A, Shimono M, Sugano S, et al. Genome-wide identification of WRKY45-regulated genes that mediate benzothiadiazole-induced defense responses in rice. BMC Plant Biol. 2013;13:150.
Article
PubMed
PubMed Central
Google Scholar
Sugano S, Jiang CJ, Miyazawa S, Masumoto C, Yazawa K, Hayashi N, et al. Role of OsNPR1 in rice defense program as revealed by genome-wide expression analysis. Plant Mol Biol. 2010;74:549–62.
Article
CAS
PubMed
Google Scholar
Takatsuji H, Jiang CJ, Sugano S. Salicylic acid signaling pathway in rice and the potential applications of its regulators. JARQ. 2010;44:217–23.
Article
CAS
Google Scholar
Takatsuji H. Development of disease-resistant rice using regulatory components of induced disease resistance. Front Plant Sci. 2014;5:630.
Article
PubMed
PubMed Central
Google Scholar
Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S, et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell. 2007;19:2064–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimono M, Koga H, Akagi A, Hayashi N, Goto S, Sawada M, et al. Rice WRKY45 plays important roles in fungal and bacterial disease resistance. Mol Plant Pathol. 2012;13:83–94.
Article
CAS
PubMed
Google Scholar
De Vleesschauwer D, Djavaheri M, Bakker PA, Höfte M. Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol. 2008;148:1996–2012.
Article
PubMed
PubMed Central
Google Scholar
Riemann M, Haga K, Shimizu T, Okada K, Ando S, Mochizuki S, et al. Identification of rice Allene Oxide Cyclase mutants and the function of jasmonate for defence against Magnaporthe oryzae. Plant J. 2013;74:226–38.
Article
CAS
PubMed
Google Scholar
Mei C, Qi M, Sheng G, Yang Y. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol Plant-Microbe Interact. 2006;19:1127–37.
Article
CAS
PubMed
Google Scholar
Helliwell EE, Wang Q, Yang Y. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnol J. 2013;11:33–42.
Article
CAS
PubMed
Google Scholar
Igarashi D, Takeda T, Narusaka Y, Totsuka K. Glutamate fermentation by-product activates plant defense responses and confers resistance against pathogen infection. J Phytopathol. 2010;158:668–75.
Article
CAS
Google Scholar
Yang Y, Qi M, Mei C. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J. 2004;40:909–19.
Article
CAS
PubMed
Google Scholar
Lam HM, Chiu J, Hsieh MH, Meisel L, Oliveira IC, Shin M, et al. Glutamate-receptor genes in plants. Nature. 1998;396:125–6.
Article
CAS
PubMed
Google Scholar
Tapken D, Anschütz U, Liu LH, Huelsken T, Seebohm G, Becker D, et al. A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids. Sci Signal. 2013;6:ra47.
Article
PubMed
Google Scholar
Kang S, Kim HB, Lee H, Choi JY, Heu S, Oh CJ, et al. Overexpression in Arabidopsis of a plasma membrane-targeting glutamate receptor from small radish increases glutamate-mediated Ca2+ influx and delays fungal infection. Mol Cells. 2006;21:418–27.
CAS
PubMed
Google Scholar
Manzoor H, Kelloniemi J, Chiltz A, Wendehenne D, Pugin A, Poinssot B, et al. Involvement of the glutamate receptor AtGLR33 in plant defense signaling and resistance to Hyaloperonospora arabidopsidis. Plant J. 2013;76:466–80.
Article
CAS
PubMed
Google Scholar
Forde BG, Roberts MR. Glutamate receptor-like channels in plants: a role as amino acid sensors in plant defence? F1000Prime Rep. 2014;6:37.
Article
PubMed
PubMed Central
Google Scholar
Stephens NR, Qi Z, Spalding EP. Glutamate receptor subtypes evidenced by differences in desensitization and dependence on the GLR33 and GLR34 genes. Plant Physiol. 2008;146:529–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mousavi SA, Chauvin A, Pascaud F, Kellenberger S, Farmer EE. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signaling. Nature. 2013;500:422–6.
Article
CAS
PubMed
Google Scholar
Dempsey DA, Klessig DF. SOS – too many signals for systemic acquired resistance? Trends Plant Sci. 2012;17:538–45.
Article
CAS
PubMed
Google Scholar
Návarová H, Bernsdorff F, Döring AC, Zeier J. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell. 2012;24:5123–41.
Article
PubMed
PubMed Central
Google Scholar
Fabro G, Kovács I, Pavet V, Szabados L, Alvarez ME. Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Mol Plant-Microbe Interact. 2004;17:343–50.
Article
CAS
PubMed
Google Scholar
Biswas KK, Neumann R, Haga K, Yatoh O, Iino M. Photomorphogenesis of rice seedlings: a mutant impaired in phytochrome-mediated inhibition of coleoptile growth. Plant Cell Physiol. 2003;44:242–54.
Article
CAS
PubMed
Google Scholar
Hirata K, Kusaba M, Chuma I, Osue J, Nakayashiki H, Mayama S, et al. Speciation in Pyricularia inferred from multilocus phylogenetic analysis. Mycol Res. 2007;111:799–808.
Article
CAS
PubMed
Google Scholar
Watanabe T, Igarashi H, Matsumoto K, Seki S, Mase S, Sekizawa Y. The characteristics of probenazole (Oryzemates®) for the control of rice blast. J Pestic Sci. 1977;22:291–6.
Article
Google Scholar
Qi M, Yang Y. Quantification of Magnaporthe grisea during infection of rice plants using real-time polymerase chain reaction and northern blot/phosphoimaging analyses. Phytopathology. 2002;92:870–6.
Article
CAS
PubMed
Google Scholar
Jain M, Nijhawan A, Tyagi AK, Khurana JP. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun. 2006;345:646–51.
Article
CAS
PubMed
Google Scholar