Madej LJ. Worldwide trends in rye growing and breeding. Vortr Pflanzenzucht. 1996;35:1–6.
Google Scholar
Schittenhelm S, Kraft M, Wittich KP. Performance of winter cereals grown on field-stored soil moisture only. Eur J Agron. 2014;52:247–58.
Article
Google Scholar
Behre K-E. The history of rye cultivation in Europe. Veg Hist Archaeobot. 1992;1:141–56.
Google Scholar
Grabowski R. Changes in cereal cultivation during the Iron Age in southern Sweden: a compilation and interpretation of the archaeobotanical material. Veg Hist Archaeobot. 2011;20:479–94.
Article
Google Scholar
Palm, LA & Linde M. Sverige 1570–1805: befolkning, jordbruk, jordägande. Göteborg: Institutionen för historiska studier. Göteborgs universitet; 2012–2014.
Ahokas H. Crop evolution under fire: the past cultivation with sequential kytö burning selected against the shattering weedy forms and comparison between Finnish kytö and Ethiopian guie. Helsinki: Kave; 2012.
Google Scholar
Khush GS. Cytogenetic and evolutionaty studies in Secale. II. Interrelationships of the wild species. Evolution. 1962;16:484–96.
Article
Google Scholar
Sencer HA, Hawkes JG. On the origin of cultivated rye. Biol J Linn Soc. 1980;13:299–313.
Article
Google Scholar
Hammer K. Breeding system and phylogenetic relationships in Secale L. Biol Zentralbl. 1990;109:45–50.
Google Scholar
Frederiksen S, Petersen G. A taxonomic revision of Secale (Triticeae, Poaceae). Nord J Bot. 1998;18:339–420.
Article
Google Scholar
De Bustos A, Jouve N. Phylogenetic relationships of the genus Secale based on the characterisation of rDNA ITS sequences. Plant Syst Evol. 2002;235:147–54.
Article
Google Scholar
Shang HY, Baum BR, Wei YM, Zheng Y. The 5S rRNA gene diversity in the genus Secale and determination of its closest haplomes. Genet Resour Crop Evol. 2007;54:793–806.
Article
CAS
Google Scholar
Chikmawati T, Skovmand B, Gustafson JP. Phylogenetic relationships among Secale species revealed by amplified fragment length polymorphisms. Genome. 2005;48:792–801.
Article
PubMed
CAS
Google Scholar
Chikmawati T, Miftahudin M, Skovmand B, Gustafson JP. Amplified fragment length polymorphism-based genetic diversity among cultivated and weedy rye (Secale cereale L.) accessions. Genet Resour Crop Evol. 2012;59:1743–52.
Article
CAS
Google Scholar
Ren TH, Chen F, Zou YT, Jia YH, Zhang HQ, Yan BJ, et al. Evolutionary trends of microsatellites during the speciation process and phylogenetic relationships within the genus Secale. Genome. 2011;54:316–26.
Article
PubMed
CAS
Google Scholar
Marques A, Banaei-Moghaddam AM, Klemme S, Blattner FR, Niwa K, Guerra M, et al. B chromosomes of rye are highly conserved and accompanied the development of early agriculture. Ann Bot. 2013;112:527–34.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zohary D, Hopf M, Weiss E. Domestication of Plants in the Old World, 4th edition. 4th ed. Oxford: Oxford University Press; 2012.
Book
Google Scholar
Frederiksen S, Petersen G. Morphometrical analyses of Secale (Triticeae, Poaceae). Nor J Bot. 1997;17:185–98.
Article
Google Scholar
Tang ZX, Ross K, Ren ZL, Yang ZJ, Zhang HY, Chikmawati T, Miftahudin M, Gustafson JP. Rye. In Kole C (ed) Wild crop relatives: genomic and breeding resources. 2011; New York, Springer pp: 367–396.
Camacho Villa TC, Maxted N, Scholten M, Ford-Lloyd B. Defining and identifying crop landraces. Plant Genet Resour. 2006;3:373–84.
Article
Google Scholar
Feldman M. Origins of Cultivated Wheat. In: Bonjean AP, Angus WJ, editors. The world wheat book: a history of wheat breeding. Paris: Intercept. Lavoisier Publishing; 2001.
Google Scholar
Persson K, Bothmer R. Assessing the Allozyme Variation in Cultivars and Swedish Landraces of Rye (Secale cereale L.). Hereditas. 2000;132:7–17.
Article
PubMed
CAS
Google Scholar
Persson K, Díaz O, Bothmer R. Extent and patterns of RAPD variation in landraces and cultivars of rye (Secale cereale L.) from Northern Europe. Hereditas. 2001;134:237–43.
Article
PubMed
CAS
Google Scholar
Bolibok-Brągoszewska H, Targońska M, Bolibok L, Kilian A, Rakoczy-Trojanowska M. Genome-wide characterization of genetic diversity and population structure in Secale. BMC Plant Biol. 2014;14:184.
Article
PubMed
PubMed Central
Google Scholar
Ganal MW, Altmann T, Röder MS. SNP identification in crop plants. Curr Opin Plant Biol. 2009;12:211–7.
Article
PubMed
CAS
Google Scholar
McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, et al. Genome-wide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci U S A. 2009;106:12273–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Caicedo AL, Williamson SH, Hernandez RD, Boyko A, Fledel-Alon A, York TL, et al. Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet. 2007;3:1745–56.
Article
PubMed
CAS
Google Scholar
Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J. Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One. 2009;4:e8451.
Article
PubMed
PubMed Central
Google Scholar
Van Inghelandt D, Reif JC, Dhillon BS, Flament P, Melchinger AE. Extent and genome-wide distribution of linkage disequilibrium in commercial maize germplasm. Theor Appl Genet. 2011;123:11–20.
Article
PubMed
Google Scholar
Allen AM, Barker GL, Berry ST, Coghill JA, Gwilliam R, Kirby S, et al. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J. 2011;9:1086–99.
Article
PubMed
CAS
Google Scholar
Oliveira HR, Hagenblad J, Leino MW, Leigh FJ, Lister DL, Jones MK. Wheat in the Mediterranean revisited – tetraploid wheat landraces assessed with elite bread wheat single-nucleotide polymorphism markers. BMC Genet. 2014;15:54.
Article
PubMed
PubMed Central
Google Scholar
Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, et al. Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics. 2009;10:582.
Article
PubMed
PubMed Central
Google Scholar
Comadran J, Ramsay L, MacKenzie K, Hayes P, Close TJ, Muehlbauer G, et al. Patterns of polymorphism and linkage disequilibrium in cultivated barley. Theor Appl Genet. 2011;122:523–31.
Article
PubMed
PubMed Central
Google Scholar
Forsberg NEG, Russell J, Macaulay M, Leino MW, Hagenblad J. Farmers without borders - genetic structuring in century old barley (Hordeum vulgare). Heredity. 2014;114:195–206.
Article
PubMed
Google Scholar
Li Y, Haseneyer G, Schön CC, Ankerst D, Korzun V, Wilde P, et al. High levels of nucleotide diversity and fast decline of linkage disequilibrium in rye (Secale cereale L.) genes involved in frost response. BMC Plant Biol. 2011;11:6.
Article
PubMed
PubMed Central
Google Scholar
Haseneyer G, Schmutzer T, Seidel M, Zhou R, Mascher M, Schön CC, et al. From RNA-seq to large-scale genotyping - genomics resources for rye (Secale cereale L.). BMC Plant Biol. 2011;11:131.
Article
PubMed
CAS
PubMed Central
Google Scholar
Varshney RK, Beier U, Khlestkina EK, Kota R, Korzun V, Graner A, et al. Single nucleotide polymorphisms in rye (Secale cereale L.): discovery, frequency, and applications for genome mapping and diversity studies. Theor Appl Genet. 2007;114:1105–16.
Article
PubMed
CAS
Google Scholar
Miedaner T, Hübner M, Korzun V, Schmiedchen B, Bauer E, Haseneyer G, et al. Genetic architecture of complex agronomic traits examined in two testcross populations of rye (Secale cereale L.). BMC genomics. 2012;13.
McGrath S, Hodkinson TR, Salamin N, Barth S. Development and testing of novel chloroplast microsatellite markers for Lolium perenne and other grasses (Poaceae) from de novo sequencing and in silico sequences. Mol Ecol Notes. 2006;6:449–52.
Article
CAS
Google Scholar
Ishii T, Mori N, Ogihara Y. Evaluation of allelic diversity at chloroplast microsatellite loci among common wheat and its ancestral species. Theor Appl Genet. 2001;103:896–904.
Article
CAS
Google Scholar
Bouma E. Development of comparable agro-climatic zones for the international exchange of data on the efficacy and crop safety of plant protection products. OEPP/EPPO Bulletin. 2005;35:233–8.
Article
Google Scholar
Liu K, Muse SV. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics. 2005;21:2128–9.
Article
PubMed
CAS
Google Scholar
Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics. 2012;28:2537–9.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pritchard J, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.
PubMed
CAS
PubMed Central
Google Scholar
Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:1801–6.
Article
PubMed
CAS
Google Scholar
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–20.
Article
PubMed
CAS
Google Scholar
R development core team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.
Google Scholar
Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11:1–15.
Article
Google Scholar
Conrad DF, Jakobsson M, Coop G, Wen X, Wall JD, Rosenberg NA, et al. A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nat Genet. 2006;38:1251–60.
Article
PubMed
CAS
Google Scholar
Frascaroli E, Canè MA, Pè ME, Pea G, Landi P. Characterization of heterotic quantitative trait loci in maize by evaluation of near-isogenic lines and their crosses at two competition levels. Theor Appl Genet. 2012;124:35–47.
Article
PubMed
Google Scholar
Doebley J. The genetics of maize evolution. Annu Rev Genet. 2004;38:37–59.
Article
PubMed
CAS
Google Scholar
Zhu Q, Zheng X, Luo J, Gaut BS, Ge S. Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol. 2007;24:875–88.
Article
PubMed
CAS
Google Scholar
Haudry A, Cencí A, Ravel C, Bataillon T, Brunel D, Poncet C, et al. Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol. 2005;24:1506–17.
Article
Google Scholar
Moragues M, Comadran J, Waugh R, Milne I, Flavell AJ, Russell JR. Effects of ascertainment bias and marker number on estimations of barley diversity from high-throughput SNP genotype data. Theor Appl Genet. 2010;120:1525–34.
Article
PubMed
CAS
Google Scholar
Russell J, Dawson IK, Flavell AJ, Steffenson B, Weltzien E, Booth A, et al. Analysis of >1000 single nucleotide polymorphisms in geographically matched samples of landrace and wild barley indicates secondary contact and chromosome-level differences in diversity around domestication genes. New Phytol. 2011;191:564–78.
Article
PubMed
Google Scholar
Shang H, Wei Y, Wang X, Zheng Y. Genetic diversity and phylogenetic relationships in the rye genus Secale L. (rye) based on Secale cereale microsatellite markers. Genet Mol Biol. 2006;29:685–91.
Article
CAS
Google Scholar
Leino MW, Boström E, Hagenblad J. Twentieth-century changes in the genetic composition of Swedish field pea metapopulations. Heredity. 2012;110:338–46.
Article
PubMed
PubMed Central
Google Scholar
Tvengsberg PM. Det värmlandsfinske svedjebruket. In: Larsson B, editor. Svedjebruk och röjningsbränning i Norden. Stockholm: Nordiska museet; 1995. p. 109–18.
Google Scholar
Kostoff D. Frequency of polyembryony and chlorophyll deficiency in rye. CR Acad Sci URSS. 1939;24:479–82.
Google Scholar
Reddy P, Appels R, Baum BR. Ribosomal DNA spacer-length variation in Secale spp. (Poaceae). Plant Syst Evol. 1990;171:205–20.
Article
CAS
Google Scholar
Altpeter F, Korzun V. Rye. In: Pua EC, Davey MR, editors. Biotechnology in Agriculture and Forestry – Transgenic Crops IV. Berlin: Springer; 2007.
Google Scholar
Burger JC, Holt JM, Ellstrand NC. Rapid phenotypic divergence of feral rye from domesticated cereal rye. Weed Sci. 2007;55:204–11.
Article
CAS
Google Scholar
Ma R, Yli-Mattila T, Pulli S. Phylogenetic relationships among genotypes of worldwide collection of spring and winter ryes (Secale cereale L.) determined by RAPD-PCR markers. Hereditas. 2004;140:210–21.
Article
PubMed
Google Scholar
Fogelqvist J, Niittyvuopio A, Agren J, Savolainen O, Lascoux M. Cryptic population genetic structure: the number of inferred clusters depends on sample size. Mol Ecol Resour. 2010;10:314–23.
Article
PubMed
Google Scholar
Hagenblad J, Zie J, Leino MW. Exploring the population genetics of genebank and historical landrace varieties. Genet Resour Crop Evol. 2012;59:1185–99.
Article
Google Scholar
Vedel F, Quetier F, Cauderon Y, Dosba F, Doussinault G. Studies on maternal inheritance in polyploid wheats with cytoplasmic DNAs as genetic markers. Theor Appl Genet. 1981;59:239–45.
PubMed
CAS
Google Scholar
Corriveau JL, Coleman AW. Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot. 1988;75:1443–58.
Article
Google Scholar
Fröst S, Vaivars L, Carlbom C. Reciprocal extrachromosomal inheritance in rye (Secale cereale L.). Hereditas. 1970;65:251–60.
Article
Google Scholar
Soliman K, Fedak G, Allard RW. Inheritance of organelle DNA in barley and Hordeum X Secale intergeneric hybrids. Genome. 1987;29:867–72.
Article
CAS
Google Scholar
Mogensen HL, Rusche ML. Occurrence of plastids in rye (Poaceae) sperm cells. Am J Bot. 2000;87:1189–92.
Article
PubMed
CAS
Google Scholar
Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S. Genetic structure and diversity in Oryza sativa L. Genetics. 2005;169:1631–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Puşcaş M, Choler P, Tribsch A, Gielly L, Rioux D, Gaudeul M, et al. Post‐glacial history of the dominant alpine sedge Carex curvula in the European Alpine System inferred from nuclear and chloroplast markers. Mol Ecol. 2008;17:2417–29.
Article
PubMed
Google Scholar
Delplancke M, Alvarez N, Espíndola A, Joly H, Benoit L, Brouck E, et al. Gene flow among wild and domesticated almond species: insights from chloroplast and nuclear markers. Evol Appl. 2012;5:317–29.
Article
PubMed
CAS
PubMed Central
Google Scholar
Picó FX, Méndez-Vigo B, Martínez-Zapater JM, Alonso-Blanco C. Natural genetic variation of Arabidopsis thaliana is geographically structured in the Iberian peninsula. Genetics. 2008;180:1009–21.
Article
PubMed
PubMed Central
Google Scholar
Lains P, Silveira e Sousa P. Estatística e produção agrícola em Portugal, 1848–1914. Análise Social. 1998;33:935–68.
Google Scholar
Chevalier A, Marinova E, Peña-Chocarro L. Plants and People: Choices and Diversity Through Time. Oxford, Oxbow Books; 2012.
Pusadee T, Jamjod S, Chiang YC, Rerkasem B, Schaal BA. Genetic structure and isolation by distance in a landrace of Thai rice. Proc Natl Acad Sci U S A. 2009;106:13880–5.
Article
PubMed
CAS
PubMed Central
Google Scholar