Zhang Y, Hu XH, Shi Y, Zou ZR, Yan F, Zhao YY, et al. Beneficial role of exogenous spermidine on nitrogen metabolism in tomato seedlings exposed to saline–alkaline stress. J Am Soc Horticultural Sci. 2013;138(1):38–49.
CAS
Google Scholar
Hu L, Xiang L, Zhang L, Zhou X, Zou Z, Hu X. The photoprotective role of spermidine in tomato seedlings under salinity–alkalinity stress. PLoS One. 2014;9(10):e110855.
Article
PubMed
PubMed Central
Google Scholar
Iqbal M, Ashraf M. Changes in hormonal balance: a possible mechanism of pre‐sowing chilling‐induced salt tolerance in spring wheat. J Agronomy Crop Sci. 2010;196(6):440–54.
Article
Google Scholar
Hu XH, Zhang Y, Shi Y, Zhang Z, Zou ZR, Zhang H, et al. Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity–alkalinity mixed stress. Plant Physiol Biochem. 2012;57:200–9.
Article
PubMed
CAS
Google Scholar
Tanaka A, Tanaka R. Chlorophyll metabolism. Curr Opin Plant Biol. 2006;9(3):248–55.
Article
PubMed
CAS
Google Scholar
Pattanayak GK, Biswal AK, Reddy VS, Tripathy BC. Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase overexpressing tobacco plants. Biochem Biophys Res Commun. 2005;326(2):466–71.
Article
PubMed
CAS
Google Scholar
Rüdiger W. Chlorophyll metabolism: from outer space down to the molecular level. Phytochemistry. 1997;46(7):1151–67.
Article
Google Scholar
Sairam R, Srivastava G. Changes in antioxidant activity in sub–cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci. 2002;162(6):897–904.
Article
CAS
Google Scholar
Von Wettstein D, Gough S, Kannangara CG. Chlorophyll biosynthesis. Plant Cell. 1995;7(7):1039.
Article
Google Scholar
Sun J, Jia Y, Guo S, Li J, Shu S. Resistance of spinach plants to seawater stress is correlated with higher activity of xanthophyll cycle and better maintenance of chlorophyll metabolism. Photosynthetica. 2010;48(4):567–79.
Article
CAS
Google Scholar
Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, et al. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J. 2009;60(5):795–804.
Article
PubMed
CAS
Google Scholar
Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal. 2009;11(4):861–905.
Article
PubMed
CAS
Google Scholar
Xu S, Li J, Zhang X, Wei H, Cui L. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool–season turfgrass species under heat stress. Environ Exp Bot. 2006;56(3):274–85.
Article
CAS
Google Scholar
Hasanuzzaman M, Fujita M. Exogenous sodium nitroprusside alleviates arsenic–induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology. 2013;22(3):584–96.
Article
PubMed
CAS
Google Scholar
Saxena M, Roy SD, Singla–Pareek SL, Sopory SK, Bhalla–Sarin N. Overexpression of the glyoxalase II gene leads to enhanced salinity tolerance in Brassica juncea. Open Plant Sci J. 2011;5:23–8.
Article
CAS
Google Scholar
Bouchereau A, Aziz A, Larher F, Martin–Tanguy J. Polyamines and environmental challenges: recent development. Plant Sci. 1999;140(2):103–25.
Article
CAS
Google Scholar
Tanou G, Ziogas V, Belghazi M, Christou A, Filippou P, Job D, et al. Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Plant Cell Environ. 2014;37(4):864–85.
Article
PubMed
CAS
Google Scholar
Duan J, Li J, Guo S, Kang Y. Exogenous spermidine affects polyamine metabolism in salinity–stressed Cucumis sativus roots and enhances short–term salinity tolerance. J Plant Physiol. 2008;165(15):1620–35.
Article
PubMed
CAS
Google Scholar
Shu S, Yuan LY, Guo SR, Sun J, Yuan YH. Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. Plant Physiol Biochem. 2013;63:209–16.
Article
PubMed
CAS
Google Scholar
Romero–Aranda R, Soria T, Cuartero J. Tomato plant–water uptake and plant–water relationships under saline growth conditions. Plant Sci. 2001;160(2):265–72.
Article
PubMed
Google Scholar
Yu M, Hu CXWYH. Effects of molybdenum on the precursors of chlorophyll biosynthesis in winter wheat cultivars under low temperature. Scientia Agricultura Sinica. 2006;39(4):702–8.
Google Scholar
Porra RJ. Recent progress in porphyrin and chlorophyll biosynthesis. Photochem Photobiol. 1997;65(3):492–516.
Article
CAS
Google Scholar
Chen X, Sun J, Guo S, Gao P, Du J. Chlorophyll metabolism of spinach leaves under seawater stress. Acta Botanica Boreali–Occidentalia Sinica. 2012;09:1781–7.
Google Scholar
Wang X. Research advances about effects of enhanced UV–B radiation on plants and ecosystems. Acta Botanica Boreali–occidentalia Sinica. 2002;03:670–81.
Google Scholar
Santos CV. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci Hortic. 2004;103(1):93–9.
Article
CAS
Google Scholar
Hao SQ, Liu SQ, Zhang ZK, Cui HR, Duan JF, Chen Q. Characteristics of chlorophyll metabolism and chlorophyll fluorescence in the silvered leaf of summer squash. Acta Horticulturae Sinica. 2009;6:021.
Google Scholar
Fang Z, Bouwkamp JC, Solomos T. Chlorophyllase activities and chlorophyll degradation during leaf senescence in non–yellowing mutant and wild type of Phaseolus vulgaris L. J Exp Bot. 1998;49(320):503–10.
CAS
Google Scholar
Mapelli S, Brambilla I, Radyukina N, Ivanov YV, Kartashov A, Reggiani R, et al. Free and bound polyamines changes in different plants as a consequence of UV–B light irradiation. Gen Appl Plant Physiol. 2008;34:55–66.
CAS
Google Scholar
Hamdani S, Gauthier A, Msilini N, Carpentier R. Positive charges of polyamines protect PSII in isolated thylakoid membranes during photoinhibitory conditions. Plant Cell Physiol. 2011;52(5):866–73.
Article
PubMed
CAS
Google Scholar
Andersson B, Aro EM. Photodamage and D1 protein turnover in photosystem II. In: Regulation of photosynthesis. Springer; 2001: 377–393.
Chattopadhayay MK, Tiwari BS, Chattopadhyay G, Bose A, Sengupta DN, Ghosh B. Protective role of exogenous polyamines on salinity‐stressed rice (Oryza sativa) plants. Physiol Plant. 2002;116(2):192–9.
Article
PubMed
CAS
Google Scholar
Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 2006;141(2):391–6.
Article
PubMed
CAS
PubMed Central
Google Scholar
Stepien P, Klobus G. Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol Plant. 2005;125(1):31–40.
Article
CAS
Google Scholar
Alam M, Nahar K, Hasanuzzaman M, Fujita M. Alleviation of osmotic stress in Brassica napus, B. campestris, and B. juncea by ascorbic acid application. Biologia Plantarum. 2014;58(4):697–708.
Article
CAS
Google Scholar
Mullineaux P, Rausch T. Glutathione, photosynthesis and the redox regulation of stress–responsive gene expression. Photosynth Res. 2005;86(3):459–74.
Article
PubMed
CAS
Google Scholar
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–30.
Article
PubMed
CAS
Google Scholar
Hasanuzzaman M, Hossain MA, Fujita M. Exogenous selenium pretreatment protects rapeseed seedlings from cadmium–induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res. 2012;149(2):248–61.
Article
PubMed
CAS
Google Scholar
Ahmad P, Azooz MM, Prasad MNV. Ecophysiology and responses of plants under salt stress: Springer Science & Business Media. 2012.
Google Scholar
Sen G, Eryilmaz IE, Ozakca D. The effect of aluminium–stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina. Phytochemistry. 2014;98:54–9.
Article
PubMed
CAS
Google Scholar
Yiu JC, Juang LD, Fang DYT, Liu CW, Wu SJ. Exogenous putrescine reduces flooding–induced oxidative damage by increasing the antioxidant properties of Welsh onion. Sci Hortic. 2009;120(3):306–14.
Article
CAS
Google Scholar
Goodwin TW. Chemistry and biochemistry of plant pigments. London: Academic; 1965. p. 461.
Google Scholar
Hodgins R, Van Huystee R. Rapid simultaneous estimation of protoporphyrin and Mg–porphyrins in higher plants. J Plant Physiol. 1986;125(3):311–23.
Article
CAS
Google Scholar
Bogorad L. Methods in Enzymology, vol. 5. San Diego, New York, Berkeley, Boston, London, Sydney, Tokyo, Toronto Academic Press; 1962. p. 885–895
Morton RA. Biochemical spectroscopy: A. Hilger; London; Bristol 1975. Vol.1.
Chen MM, Chao PY, Huang MY, Yang JH, Yang ZW, Lin KH, et al. Chlorophyllase activity in green and non–green tissues of variegated plants. S Afr J Bot. 2012;81:44–9.
Article
CAS
Google Scholar
Costa ML, Civello PM, Chaves AR, Martínez GA. Effect of ethephon and 6–benzylaminopurine on chlorophyll degrading enzymes and a peroxidase–linked chlorophyll bleaching during post–harvest senescence of broccoli (Brassica oleracea L.) at 20 C. Postharvest Biol Technol. 2005;35(2):191–9.
Article
CAS
Google Scholar
Xu PL, Guo YK, Bai JG, Shang L, Wang XJ. Effects of long–term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiol Plant. 2008;132(4):467–78.
Article
PubMed
CAS
Google Scholar
Elstner EF, Heupel A. Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem. 1976;70(2):616–20.
Article
PubMed
CAS
Google Scholar
Giannopolitis CN, Ries SK. Superoxide dismutases I. Occurrence in higher plants. Plant Physiol. 1977;59(2):309–14.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate–specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22(5):867–80.
CAS
Google Scholar
Gupta AS, Webb RP, Holaday AS, Allen RD. Overexpression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase–overexpressing plants). Plant Physiol. 1993;103(4):1067–73.
PubMed
PubMed Central
Google Scholar
Zhang J, Niu J, Duan Y, Zhang M, Liu J, Li P, et al. Photoprotection mechanism in the ‘Fuji’apple peel at different levels of photooxidative sunburn. Physiol Plant. 2015;154(1):54–65.
Article
PubMed
CAS
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem. 1976;72(1):248–54.
Article
PubMed
CAS
Google Scholar
Li P, Cheng L. The shaded side of apple fruit becomes more sensitive to photoinhibition with fruit development. Physiol Plant. 2008;134(2):282–92.
Article
PubMed
CAS
Google Scholar
Wu Q, Su N, Shen W, Cui J. Analyzing photosynthetic activity and growth of Solanum lycopersicum seedlings exposed to different light qualities. Acta Physiologiae Plantarum. 2014;36(6):1411–20.
Article
CAS
Google Scholar