James M, Myers A. Seed Starch Synthesis. In: Jeff L. Bennetzen and Sarah C. Hake, editors. Handbook of Maize: Its Biology. 233 Spring Street, New York, NY 10013, USA: Springer Science+Business Media, LLC; 2009. p. 439–56
Hennen-Bierwagen TA, Myers AM. Genomic specification of starch biosynthesis in maize endosperm. Seed Genomics. 233 Spring Street, New York,NY 10013, USA: Springer Science+Business Media, LLC; 2013. p. 123–37
Huang BQ, Hennen-Bierwagen TA, Myers AM. Functions of multiple genes encoding ADP-glucose pyrophosphorylase subunits in maize endosperm, embryo, and leaf. Plant Physiol. 2014;164(2):596–611.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chourey PS, Nelson OE. The enzymatic deficiency conditioned by the shrunken-1 mutations in maize. Biochem Genet. 1976;14(11–12):1041–55.
Article
CAS
PubMed
Google Scholar
Tsai CY, Nelson OE. Starch-deficient maize mutant lacking adenosine diphosphate glucose pyrophosphorylase activity. Science. 1966;151(3708):341–3.
Article
CAS
PubMed
Google Scholar
Bhave MR, Lawrence S, Barton C, Hannah LC. Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell. 1990;2(6):581–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hannah LC, Shaw JR, Giroux MJ, Reyss A, Prioul JL, Bae JM, et al. Maize genes encoding the small subunit of ADP-glucose pyrophosphorylase. Plant Physiol. 2001;127(1):173–83.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nelson OE, Rines HW. The enzymatic deficiency in the waxy mutant of maize. Biochem Bioph Res Co. 1962;9(4):297–300.
Article
CAS
Google Scholar
Shure M, Wessler S, Fedoroff N. Molecular identification and isolation of the waxy locus in maize. Cell. 1983;35(1):225–33.
Article
CAS
PubMed
Google Scholar
Gao M, Wanat J, Stinard PS, James MG, Myers AM. Characterization of dull1, a maize gene coding for a novel starch synthase. Plant Cell. 1998;10(3):399–412.
Article
PubMed Central
CAS
PubMed
Google Scholar
Knight ME, Harn C, Lilley CE, Guan H, Singletary GW, Mu-Forster C, et al. Molecular cloning of starch synthase I from maize (W64) endosperm and expression in Escherichia coli. Plant J. 1998;14(5):613–22.
Article
CAS
PubMed
Google Scholar
Harn C, Knight M, Ramakrishnan A, Guan HP, Keeling PL, Wasserman BP. Isolation and characterization of the zSSIIa and zSSIIb starch synthase cDNA clones from maize endosperm. Plant Mol Biol. 1998;37(4):639–49.
Article
CAS
PubMed
Google Scholar
Yan HB, Jiang HW, Pan XX, Li MR, Chen YP, Wu GJ. The gene encoding starch synthase IIc exists in maize and wheat. Plant Sci. 2009;176(1):51–7.
Article
CAS
Google Scholar
Baba T, Kimura K, Mizuno K, Etoh H, Ishida Y, Shida O, et al. Sequence conservation of the catalytic regions of anylolytic enzymes in maize branching enzyme-I. Biochem Bioph Res Co. 1991;181(1):87–94.
Article
CAS
Google Scholar
Fisher DK, Boyer CD, Hannah LC. Starch branching enzyme II from maize endosperm. Plant Physiol. 1993;102(3):1045.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gao M, Fisher DK, Kim KN, Shannon JC, Guiltinan MJ. Independent genetic control of maize starch-branching enzymes IIa and IIb (isolation and characterization of a Sbe2a cDNA). Plant Physiol. 1997;114(1):69–78.
Article
PubMed Central
CAS
PubMed
Google Scholar
James MG, Robertson DS, Myers AM. Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell. 1995;7(4):417–29.
Article
PubMed Central
CAS
PubMed
Google Scholar
Goldman IL, Rocheford TR, Dudley JW. Quantitative trait loci influencing protein and starch concentration in the Illinois long term selection maize strains. Theor Appl Genet. 1993;87(1–2):217–24.
CAS
PubMed
Google Scholar
Séne M, Causse M, Damerval C, Thévenot C, Prioul JL. Quantitative trait loci affecting amylose, amylopectin and starch content in maize recombinant inbred lines. Plant Physiol Bioch. 2000;38(6):459–72.
Article
Google Scholar
Séne M, Thévenot C, Hoffmann D, Bénétrix F, Causse M, Prioul JL. QTLs for grain dry milling properties, composition and vitreousness in maize recombinant inbred lines. Theor Appl Genet. 2001;102(4):591–9.
Article
Google Scholar
Dudley JW, Dijkhuizen A, Paul C, Coates ST, Rocheford TR. Effects of random mating on marker–QTL associations in the cross of the Illinois high protein × Illinois low protein maize strains. Crop Sci. 2004;44(4):1419–28.
Article
CAS
Google Scholar
Clark D, Dudley JW, Rocheford TR, LeDeaux JR. Genetic analysis of corn kernel chemical composition in the random mated 10 generation of the cross of generations 70 of IHO × ILO. Crop Sci. 2006;46(2):807–19.
Article
Google Scholar
Dudley J, Clark D, Rocheford TR, LeDeaux JR. Genetic analysis of corn kernel chemical composition in the random mated 7 generation of the cross of generations 70 of IHP × ILP. Crop Sci. 2007;47(1):45–57.
Article
CAS
Google Scholar
Wassom JJ, Wong JC, Martinez E, King JJ, DeBaene J, Hotchkiss JR, et al. QTL associated with maize kernel oil, protein, and starch concentrations; kernel mass; and grain yield in Illinois high oil × B73 backcross-derived lines. Crop Sci. 2008;48(1):243–52.
Article
Google Scholar
Zhang J, Lu XQ, Song XF, Yan JB, Song TM, Dai JR, et al. Mapping quantitative trait loci for oil, starch, and protein concentrations in grain with high-oil maize by SSR markers. Euphytica. 2008;162(3):335–44.
Article
CAS
Google Scholar
Liu YY, Dong YB, Niu SZ, Cui DC, Wang YZ, Wei MG, et al. QTL identification of kernel composition traits with popcorn using both F2: 3 and BC2F2 populations developed from the same cross. J Cereal Sci. 2008;48(3):625–31.
Article
CAS
Google Scholar
Wang YZ, Li JZ, Li YL, Wei MG, Li XH, Fu JF. QTL detection for grain oil and starch content and their associations in two connected F2: 3 populations in high-oil maize. Euphytica. 2010;174(2):239–52.
Article
CAS
Google Scholar
Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, et al. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol. 2012;158(2):824–34.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang GH, Dong YB, Li YL, Wang QL, Shi QL, Zhou Q. Verification of QTL for grain starch content and its genetic correlation with oil content using two connected RIL populations in high-oil maize. PLoS One. 2013;8(1):e53770.
Article
PubMed Central
CAS
PubMed
Google Scholar
Guo YQ, Yang XH, Chander S, Yan JB, Zhang J, Song TM, et al. Identification of unconditional and conditional QTL for oil, protein and starch content in maize. Crop J. 2013;1(1):34–42.
Article
Google Scholar
Salazar-Salas NY, Pineda-Hidalgo KV, Chavez-Ontiveros J, Gutierrez-Dorado R, Reyes-Moreno C, Bello-Pérez LA, et al. Biochemical characterization of QTLs associated with endosperm modification in quality protein maize. J Cereal Sci. 2014;60(1):255–63.
Article
CAS
Google Scholar
Dong YB, Zhang ZW, Shi QL, Wang QL, Zhou Q, Li YL. QTL identification and meta-analysis for kernel composition traits across three generations in popcorn. Euphytica. 2015;204:649–60.
Article
Google Scholar
Salvi S, Tuberosa R. To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci. 2005;10(6):297–304.
Article
CAS
PubMed
Google Scholar
Mackay TF, Stone EA, Ayroles JF. The genetics of quantitative traits: challenges and prospects. Nat Rev Genet. 2009;10(8):565–77.
Article
CAS
PubMed
Google Scholar
Zou GH, Zhai GW, Feng Q, Yan S, Wang AH, Zhao Q, et al. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot. 2012;63(15):5451–62.
Article
CAS
PubMed
Google Scholar
Chen W, Chen H, Zheng T, Yu R, Terzaghi WB, Li Z, et al. Highly efficient genotyping of rice biparental populations by GoldenGate assays based on parental resequencing. Theor Appl Genet. 2014;127(2):297–307.
Article
PubMed
Google Scholar
Li K, Yan JB, Li JS, Yang XH. Genetic architecture of rind penetrometer resistance in two maize recombinant inbred line populations. BMC Plant Biol. 2014;14(1):152.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maccaferri M, Ricci A, Salvi S, Milner SG, Noli E, Martelli PL, et al. A highdensity, SNPbased consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnol J. 2015;13(5):648–63.
Article
CAS
PubMed
Google Scholar
Van Os H, Andrzejewski S, Bakker E, Barrena I, Bryan GJ, Caromel B, et al. Construction of a 10,000-marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and a genomewide physical map. Genetics. 2006;173(2):1075–87.
Article
PubMed Central
PubMed
Google Scholar
Huang XH, Feng Q, Qian Q, Zhao Q, Wang L, Wang AH, et al. High-throughput genotyping by whole-genome resequencing. Genome Res. 2009;19(6):1068–76.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xie WB, Feng Q, Yu HH, Huang XH, Zhao Q, Xing YZ, et al. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci U S A. 2010;107(23):10578–83.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yu HH, Xie WB, Wang J, Xing YZ, Xu CG, Li XH, et al. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One. 2011;6(3), e17595.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pan QC, Ali F, Yang XH, Li JS, Yan JB. Exploring the genetic characteristics of two recombinant inbred line populations via high-density SNP markers in maize. PLoS One. 2012;7(12):e52777.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xu XY, Zeng L, Tao Y, Vuong T, Wan JR, Boerma R, et al. Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci U S A. 2013;110(33):13469–74.
Article
PubMed Central
CAS
PubMed
Google Scholar
Guo TT, Yang N, Tong H, Pan QC, Yang XH, Tang JH, et al. Genetic basis of grain yield heterosis in an “immortalized F2” maize population. Theor Appl Genet. 2014;127(10):2149–58.
Article
PubMed
Google Scholar
Chen ZL, Wang BB, Dong XM, Liu H, Ren LH, Chen J, et al. An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics. 2014;15(1):433.
Article
PubMed Central
PubMed
Google Scholar
Mackay TF. Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet. 2014;15(1):22–33.
Article
PubMed Central
CAS
PubMed
Google Scholar
Doebley J, Stec A, Gustus C. teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics. 1995;141(1):333.
PubMed Central
CAS
PubMed
Google Scholar
Lukens LN, Doebley J. Epistatic and environmental interactions for quantitative trait loci involved in maize evolution. Genet Res. 1999;74(03):291–302.
Article
CAS
Google Scholar
Laurie CC, Chasalow SD, LeDeaux JR, McCarroll R, Bush D, Hauge B, et al. The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics. 2004;168(4):2141–55.
Article
PubMed Central
PubMed
Google Scholar
Dudley JW. Epistatic interactions in crosses of Illinois high oil × Illinois low oil and of Illinois high protein × Illinois low protein corn strains. Crop Sci. 2008;48(1):59–68.
Article
Google Scholar
Yang XH, Guo YQ, Yan JB, Zhang J, Song TM, Rocheford T, et al. Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize. Theor Appl Genet. 2010;120(3):665–78.
Article
CAS
PubMed
Google Scholar
Durand E, Bouchet S, Bertin P, Ressayre A, Jamin P, Charcosset A, et al. Flowering time in maize: linkage and epistasis at a major effect locus. Genetics. 2012;190(4):1547–62.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wilson LM, Whitt SR, Ibáñez AM, Rocheford TR, Goodman MM, Buckler ES. Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell. 2004;16(10):2719–33.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stange M, Utz HF, Schrag TA, Melchinger AE, Würschum T. High-density genotyping: an overkill for QTL mapping? Lessons learned from a case study in maize and simulations. Theor Appl Genet. 2013;126(10):2563–74.
Article
CAS
PubMed
Google Scholar
Wen WW, Li K, Alseekh S, Omranian N, Zhao LJ, Zhou Y, et al. Genetic Determinants of the Network of Primary Metabolism and Their Relationships to Plant Performance in a Maize Recombinant Inbred Line Population. Plant Cell. 2015;27(7):1839–56.
Article
PubMed Central
CAS
PubMed
Google Scholar
Skovbjerg H, Norén O, Sjöström H, Danielsen EM, Enevoldsen BS. Further characterization of intestinal lactase/phlorizin hydrolase. BBA-Protein Struct M. 1982;707(1):89–97.
Article
CAS
Google Scholar
Day AJ, Cañada FJ, Dı́az JC, Kroon PA, Mclauchlan R, Faulds CB. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. Febs Lett. 2000;468(2):166–70.
Article
CAS
PubMed
Google Scholar
Zhou ML, Zhang Q, Sun ZM, Chen LH, Liu BX, Zhang KX, et al. Trehalose metabolism-related genes in maize. J Plant Growth Regul. 2014;33(2):256–71.
Article
Google Scholar
Schluepmann H, Pellny T, van Dijken A, Smeekens S, Paul M. Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2003;100(11):6849–54.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P. Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci U S A. 2005;102(31):11118–23.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lunn J, Feil R, Hendriks J, Gibon Y, Morcuende R, Osuna D, et al. Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J. 2006;397:139–48.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lassner MW, Lardizabal K, Metz JG. A jojoba beta-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell. 1996;8(2):281–92.
PubMed Central
CAS
PubMed
Google Scholar
Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J. 2004;40(4):575–85.
Article
CAS
PubMed
Google Scholar
Shen B, Allen WB, Zheng PZ, Li CJ, Glassman K, Ranch J, et al. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol. 2010;153(3):980–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Halford NG, Hey S, Jhurreea D, Laurie S, McKibbin RS, Paul M, et al. Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. J Exp Bot. 2003;54(382):467–75.
Article
CAS
PubMed
Google Scholar
McKibbin RS, Muttucumaru N, Paul MJ, Powers SJ, Burrell MM, Coates S, et al. Production of high-starch, low-glucose potatoes through over-expression of the metabolic regulator SnRK1. Plant Biotechnol J. 2006;4(4):409–18.
Article
CAS
PubMed
Google Scholar
Xr Z, Tan G, Yx X, Wei L, Chao Q, Wl Z, et al. Marker-assisted introgression of qHSR1 to improve maize resistance to head smut. Mol Breeding. 2012;30(2):1077–88.
Article
Google Scholar
Azmach G, Gedil M, Menkir A, Spillane C. Marker-trait association analysis of functional gene markers for provitamin A levels across diverse tropical yellow maize inbred lines. BMC Plant Biol. 2013;13(1):227.
Article
PubMed Central
PubMed
Google Scholar
Hao XM, Li XW, Yang XH, Li JS. Transferring a major QTL for oil content using marker-assisted backcrossing into an elite hybrid to increase the oil content in maize. Mol Breeding. 2014;34(2):739–48.
Article
CAS
Google Scholar
Dong X, Xu XW, Li L, Liu CX, Tian XL, Li W, et al. Marker-assisted selection and evaluation of high oil in vivo haploid inducers in maize. Mol Breeding. 2014;34(3):1147–58.
Article
CAS
Google Scholar
Sharp PJ, Johnston S, Brown G, McIntosh RA, Pallotta M, Carter M, et al. Validation of molecular markers for wheat breeding. Crop Pasture Sci. 2001;52(12):1357–66.
Article
CAS
Google Scholar
Thomas W. Prospects for molecular breeding of barley. Ann Appl Biol. 2003;142(1):1–12.
Article
CAS
Google Scholar
Collard BC, Mackill DJ. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos T R Soc B. 2008;363(1491):557–72.
Article
CAS
Google Scholar
Yang XH, Yan JB, Shah T, Warburton ML, Li Q, Li L, et al. Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet. 2010;121:417–31.
Article
PubMed
Google Scholar
Yang XH, Gao SB, Xu ST, Zhang ZX, Prasanna BM, Li L, et al. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breeding. 2011;28(4):511–26.
Article
Google Scholar
Zhou L, Bao XM. High throughput method for measuring total fermentables in small amount of plant part. U.S. Patent 8,329,426[P]. 2012-12-11.
Knapp SJ, Stroup WW, Ross WM. Exact confidence intervals for heritability on a progeny mean basis. Crop Sci. 1985;25(1):192–4.
Article
Google Scholar
Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, et al. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One. 2011;6(12):e28334.
Article
PubMed Central
CAS
PubMed
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.
Article
PubMed Central
CAS
PubMed
Google Scholar
De Givry S, Bouchez M, Chabrier P, Milan D, Schiex T. Carh ta Gene: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics. 2005;21(8):1703–4.
Article
PubMed
Google Scholar
Zeng ZB. Precision mapping of quantitative trait loci. Genetics. 1994;136(4):1457–68.
PubMed Central
CAS
PubMed
Google Scholar
Wang S, Basten CJ, Zeng ZB. Windows QTL cartographer version 2.5. Statistical genetics. Raleigh: North Carolina State University; 2005.
Google Scholar
Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics. 1994;138(3):963–71.
PubMed Central
CAS
PubMed
Google Scholar
Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989;121(1):185–99.
PubMed Central
CAS
PubMed
Google Scholar
Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative trait loci. Genetics. 1999;152(3):1203–16.
PubMed Central
CAS
PubMed
Google Scholar