Gensel PG. The earliest land plants. Ann Rev Ecol Evol. 2008;39:459–77.
Article
Google Scholar
Kenrick P, Crane PR. The origin and early evolution of plants on land. Nature. 1997;389:33–9.
Article
CAS
Google Scholar
Qiu YL, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, et al. The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci. 2006;103:15511–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chang Y, Graham SW. Inferring the higher-order phylogeny of mosses (Bryophyta) and relatives using a large, multigene plastid data set. Am J Bot. 2011;98:839–49.
Article
PubMed
Google Scholar
Nickrent DL, Parkinson CL, Palmer JD, Duff RJ. Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. Mol Biol Evol. 2000;17:1885–95.
Article
CAS
PubMed
Google Scholar
Nishiyama T, Wolf PG, Kugita M, Sinclair RB, Sugita M, Sugiura C, et al. Chloroplast phylogeny indicates that bryophytes are monophyletic. Mol Biol Evol. 2004;21:1813–9.
Article
CAS
PubMed
Google Scholar
Qiu YL, Cho Y, Cox JC, Palmer JD. The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature. 1998;394:671–4.
Article
CAS
PubMed
Google Scholar
Cox CJ, Li B, Foster PG, Embley TM, Civan P. Conflicting phylogenies for early land plants are caused by composition biases among synonymous substitutions. Syst Biol. 2014;63:272–9.
Article
PubMed Central
PubMed
Google Scholar
Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci. 2014;111:E4859–68.
Article
PubMed Central
CAS
PubMed
Google Scholar
Menand B, Yi K, Jouannic S, Hoffmann L, Ryan E, Linstead P, et al. An ancient mechanism controls the development of cells with a rooting function in land plants. Science. 2007;316:1477–80.
Article
CAS
PubMed
Google Scholar
Yasumura Y, Crumpton-Taylor M, Fuentes S, Harberd NP. Step-by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism during land-plant evolution. Curr Biol. 2007;17:1225–30.
Article
CAS
PubMed
Google Scholar
Yasumura Y, Moylan E, Langdale J. A conserved transcription factor mediates nuclear control of organelle biogenesis in anciently diverged land plants. Plant Cell. 2005;17:1894–907.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ligrone R, Duckett JG, Renzaglia KS. Major transitions in the evolution of early land plants: a bryological perspective. Ann Bot. 2012;109:851–71.
Article
PubMed Central
PubMed
Google Scholar
Tomescu AM, Wyatt SE, Hasebe M, Rothwell GW. Early evolution of the vascular plant body plan - the missing mechanisms. Curr Opin Plant Biol. 2014;17:126–36.
Article
PubMed
Google Scholar
Rothwell GW, Wyatt SE, Tomescu AM. Plant evolution at the interface of paleontology and developmental biology: An organism-centered paradigm. Am J Bot. 2014;101:899–913.
Article
PubMed
Google Scholar
Renzaglia KS, Villarreal JC, Duff RJ. New Insights into Morphology, Anatomy and Systematics of Hornworts. In: Bryophyte Biology II. Cambridge: Cambridge University Press; 2009. p. 139–71.
Google Scholar
Renzaglia KS. A comparative morphology and developmental anatomy of the anthocerotophyta. J Hattori Bot Lab. 1978;44:31–90.
Google Scholar
Ligrone R, Duckett JG, Renzaglia KS. The origin of the sporophyte shoot in land plants: a bryological perspective. Ann Bot. 2012;110:935–41.
Article
PubMed Central
PubMed
Google Scholar
Villarreal JC, Renner SS. Hornwort pyrenoids, carbon-concentrating structures, evolved and were lost at least five times during the last 100 million years. Proc Natl Acad Sci. 2012;109:18873–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Duckett JG, Renzaglia KS. Ultrstructure and development of plastids in bryophytes. Adv Bryology. 1988;3:33–93.
Google Scholar
Merrett C. Pinax rerum naturalium Britannicarum: continens vegetabilia, animalia, et fossilia, in hac insula reperta inchoatus, London; 1667.
Villarreal JC, Cargill DC, Hagborg A, Soderstrom L, Renzaglia KS. A synthesis of hornwort diversity: patterns, causes and future work. Phytotaxa. 2010;9:150–66.
Article
Google Scholar
Bainard JD, Villarreal JC. Genome size increases in recently diverged hornwort clades. Genome. 2013;56:431–5.
Article
CAS
PubMed
Google Scholar
Leitch IJ, Bennett MD. Genome Size and Its Uses: The Impact of Flow Cytometry. In: Flow Cytometry with Plant Cells: Analysis of Genes Chromosomes and Genomes. Weinheim: John Wiley & Sons; 2007. p. 153–76.
Chapter
Google Scholar
Vogelsang K, Schneider B, Petersen M. Production of rosmarinic acid and a new rosmarinic acid 3’-O-ß-D-glucoside in suspension cultures of the hornwort Anthoceros agrestis Paton. Planta. 2006;223:369–73.
Article
CAS
PubMed
Google Scholar
Proskauer JM. Studies on Anthocerotales. VIII Phytomorphology. 1969;19:52–66.
Google Scholar
Reski R, Abel WO. Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine. Planta. 1985;165:354–8.
Article
CAS
PubMed
Google Scholar
Cove DJ, Perroud PF, Charron AJ, McDaniel SF, Khandelwal A, Quatrano RS. Culturing the moss Physcomitrella patens. Cold Spring Harb Protoc 2009, 2009:pdb prot5136.
Proskauer JM. Studies on Anthocerotales VII. Phytomorphology. 1967;17:61–70.
Google Scholar
Porebski S, Bailey LG, Baum B. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep. 1997;15:8–15.
Article
CAS
Google Scholar
Gan X, Stegle O, Behr J, Steffen JG, Drewe P, Hildebrand KL, et al. Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature. 2011;477:419–23.
Article
CAS
PubMed
Google Scholar
Zhou L, Bawa R, Holliday JA. Exome resequencing reveals signatures of demographic and adaptive processes across the genome and range of black cottonwood (Populus trichocarpa). Mol Ecol. 2014;23:2486–99.
Article
CAS
PubMed
Google Scholar
Kamisugi Y, von Stackelberg M, Lang D, Care M, Reski R, Rensing SA, et al. A sequence-anchored genetic linkage map for the moss, Physcomitrella patens. Plant J. 2008;56:855–66.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hutner SH, Provasoli L, Schatz A, Haskins CP. Some approaches to the study of the role of metals in the metabolism of microrganisms. Proc Am Phil Soc. 1950;94:152–70.
CAS
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
PubMed Central
CAS
PubMed
Google Scholar
Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2014, doi:10.1093/bioinformatics/btu661.
Chikhi R, Medvedev P. Informed and automated k-mer size selection for genome assembly. Bioinformatics. 2014;30:31–7.
Article
CAS
PubMed
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
Article
PubMed Central
CAS
PubMed
Google Scholar
Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
DePristo M, Banks E, Poplin R, Garimella K, Maguire J, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wei Z, Wang W, Hu P, Lyon GJ, Hakonarson H. SNVer: a statistical tool for variant calling in analysis of pooled or individual next-generation sequencing data. Nucl Acids Res. 2011;39:e32.
Article
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks A, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
Article
PubMed Central
CAS
PubMed
Google Scholar