Greenwood MS: Rejuvenation of forest trees. Plant Growth Regul. 1987, 6: 1-12.
CAS
Google Scholar
Greenwood MS, Hutchison KW: Maturation as a developmental process. Clonal Forestry: Genetics, Biotechnology and Application. Edited by: Ahuja MR, Libby WJ. Springer Verlag, New York, 1993:14-33.
Google Scholar
Greenwood MS: Juvenility and maturation in conifers: current concepts. Tree Physiol. 1995, 15: 433-438.
PubMed
Google Scholar
Day M, Greenwood MS, Díaz-Sala C: Age-and size-related trends in woody plant shoot development: regulatory pathways. Tree Physiol. 2002, 22: 507-513.
CAS
PubMed
Google Scholar
Poethig SR: Phase change and the regulation of developmental timing in plants. Science. 2003, 301: 334-336.
CAS
PubMed
Google Scholar
Day ME, Greenwood MS: Regulation of Ontogeny in Temperate Conifers. Size- and Age-Related Changes in Tree Structure and Function, Tree Physiology 4. Edited by: Meinzer FC. Springer Science+Business Media BV, Dordrecht, The Netherlands, 2011:91-119.
Google Scholar
Poethig RS: Phase change and the regulation of shoot morphogenesis in plants. Science. 1990, 250: 923-930.
CAS
PubMed
Google Scholar
Hacket WP: Donor plant maturation and adventitious root formation. Adventitious Root Formation in Cuttings. Advances in Plant Sciences Series. Edited by: Davis TD, Hassig BE, Sankhla N. Dioscorides Press, Portland, OR, 1988:11-28.
Google Scholar
Greenwood MS, Weir RJ: Genetic variation in rooting ability of loblolly pine cuttings: effect of auxin and family on rooting by hypocotyl cuttings. Tree Physiol. 1995, 15: 41-45.
CAS
PubMed
Google Scholar
Díaz-Sala C, Hutchison KW, Golfbarb B, Greenwood MS: Maturation-related loss in rooting competence by loblolly pine stem cuttings: role of polar auxin transport and tissue sensitivity. Physiol Plant. 1996, 97: 481-490.
Google Scholar
Hutchison KW, Singer PB, McInnis S, Díaz-Sala C, Greenwood MS: Expansins are conserved in conifers and expressed in hypocotyls in response to exogenous auxin. Plant Physiol. 1999, 120: 827-831.
PubMed Central
CAS
PubMed
Google Scholar
Díaz-Sala C, Garrido G, Sabater B: Age-related loss of rooting capability in Arabidopsis thaliana and its reversal by peptides containing the RGD motif. Physiol Plant. 2002, 114: 601-607.
PubMed
Google Scholar
Abarca D, Díaz-Sala C: Adventitious root formation in conifers. Adventitious Root Formation of Forest Trees and Horticultural Plants - from Genes to Applications. Edited by: Niemi K, Scagel C. Research Signpost Publishers, India, 2009, 227-257.
Google Scholar
George EF, Hall MA, De Klerk GJ: Plant Propagation by Tissue Culture. Volume 1. The Background. Exegetics, Basingstoke, UK 2008.
Google Scholar
Greenwood MS, Cui X, Xu F: Response to auxin changes during maturation-related loss of adventitious rooting competence in loblolly pine (Pinus taeda) stem cuttings. Physiol Plant. 2001, 111: 373-380.
CAS
PubMed
Google Scholar
Sánchez C, Vielba JM, Ferro E, Covelo G, Solé A, Abarca D, de Mier BS, Díaz-Sala C: Two SCARECROW-LIKE genes are induced in response to exogenous auxin in rooting-competent cuttings of distantly related forest species. Tree Physiol. 2007, 27: 1459-1470.
PubMed
Google Scholar
Solé A, Sánchez C, Vielba JM, Valladares S, Abarca D, Díaz-Sala C: Characterization and expression of a Pinus radiata putative ortholog to the Arabidopsis SHORT-ROOT gene. Tree Physiol. 2008, 28: 1629-1639.
PubMed
Google Scholar
Abarca D, Díaz-Sala C: Reprogramming adult cells during organ regeneration in forest species. Plant Signal Behav. 2009, 4: 1-3.
Google Scholar
Ricci A, Rolli E, Dramis L, Díaz-Sala C: N, N´-bis-(2,3-methylenedioxyphenyl)urea and N, N´-bis-(3,4-methylenedioxyphenyl)urea enhance adventitious rooting in Pinus and affect the expression of genes induced during adventitious root formation. Plant Sci. 2008, 175: 356-363.
CAS
Google Scholar
Brunoni F, Rolli E, Dramis L, Incerti M, Abarca D, Pizarro A, Díaz-Sala C, Ricci A: Adventitious rooting adjuvant activity of 1,3-di(benzo[d]oxazol-5-yl) urea and 1,3-di(benzo[d]oxazol-6-yl)urea: new insights and perspectives. Plant Cell Tiss Organ Cult. 2014, 118: 111-124.
CAS
Google Scholar
Boucheron E, Guivarc’h A, Azmi A, Dewitte W, Van Onckelen H, Chriqui D: Competency of Nicotiana tabacum L stem tissues to dedifferentiate is associated with differential levels of cell cycle gene expression and endogenous cytokinins. Planta. 2002, 215: 267-278.
CAS
PubMed
Google Scholar
Ishikawa M, Murata T, Sato Y, Nishiyama T, Hiwatashi Y, Imai A, Kimura M, Sugimoto N, Akita A, Oguri Y, Friedman WE, Hasebe M, Kubo M: Physcomitrella cyclin-dependent kinase A links cell cycle reactivation to other cellular changes during reprogramming of leaf cells. Plant Cell. 2011, 23: 2924-2938.
PubMed Central
CAS
PubMed
Google Scholar
De Almeida M, Vieira de Almeida C, Mendes Graner E, Ebling Brondani G, Fiori de Abreu-Tarazi M: Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study. Plant Cell Rep. 2012, 31: 1495-1515.
CAS
PubMed
Google Scholar
Grönroos R, Von Arnold S: Initiation of roots on hypocotyl cuttings of Pinus sylvestris, with emphasis on direct rooting, root elongation and auxin uptake. Can J For Res. 1988, 18: 1457-1462.
Google Scholar
Ballester A, San-José MC, Vidal N, Fernández-Lorenzo JL, Vieitez AM: Anatomical and biochemical events during in vitro rooting of microcuttings from juvenile and mature plants of chestnut. Ann Bot. 1999, 83: 619-629.
CAS
Google Scholar
Vidal N, Arellano G, San-Jose MC, Vieitez AM, Ballester B: Development stages during the rooting of in vitro-cultured Quercus robur shoots from material of juvenile and mature origin. Tree Physiol. 2003, 23: 1247-1254.
CAS
PubMed
Google Scholar
Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, Meyerowitz EM: Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development. 2007, 134: 3539-3548.
CAS
PubMed
Google Scholar
Chen SK, Kurdyukov S, Kereszt A, Wang XD, Gressho PM, Rose RJ: The association of homeobox gene expression with stem cell formation and morphogenesis in cultured Medicago truncatula . Planta. 2009, 230: 827-840.
PubMed Central
CAS
PubMed
Google Scholar
Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS: Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis . Plant J. 2009, 59: 448-460.
PubMed Central
CAS
PubMed
Google Scholar
Kakani A, Li G, Peng Z: Role of AUX1 in the control of organ identity during in vitro organogenesis and in mediating tissue specific auxin and cytokinin interaction in arabidopsis. Planta. 2009, 229: 645-657.
CAS
PubMed
Google Scholar
Ledwon A, Gaj MD: LEAFY COTYLEDON2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells. Plant Cell Rep. 2009, 28: 1677-1688.
CAS
PubMed
Google Scholar
Elhiti M, Tahir M, Gulden RH, Khamiss K, Stasolla C: Modulation of embryo-forming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. J Exp Bot. 2010, 61: 4069-4085.
PubMed Central
CAS
PubMed
Google Scholar
Yang X, Zhang X, Yuan D, Jin F, Zhang Y, Xu J: Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biol. 2012, 12: 110-doi:10.1186/1471-2229-12-110
PubMed Central
CAS
PubMed
Google Scholar
Feeney M, Frigerio L, Cui Y, Menassa R: Following vegetative to embryonic cellular changes in leaves of Arabidopsis overexpressing LEAFY COTYLEDON. Plant Phys. 2013, 162: 1881-1896.
CAS
Google Scholar
Liu J, Sheng L, Xu Y, Li J, Yang Z, Huang H, Xua L: WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis . Plant Cell. 2014, 26: 1081-1093.
PubMed Central
CAS
PubMed
Google Scholar
Garces HMP, Koenig D, Townsley BT, Kim M, Sinha NR: Truncation of LEAFY COTYLEDON1 protein is required for asexual reproduction in Kalanchoë daigremontiana . Plant Phys. 2014, 165: 196-206.
CAS
Google Scholar
Grunewald W, Friml J: The march of the PINs: developmental plasticity by dynamic polar targeting in plant cells. EMBO J. 2010, 29: 2700-2714.
PubMed Central
CAS
PubMed
Google Scholar
Chupeau MC, Granier F, Pichon O, Renou JP, Gaudin V, Chupeau Y: Characterization of the early events leading to totipotency in an Arabidopsis protoplast liquid culture by temporal transcript profiling. Plant Cell. 2013, 25: 2444-2463.
PubMed Central
CAS
PubMed
Google Scholar
Guo F, Liu C, Xia H, Bi Y, Zhao C, Zhao S, Hou L, Li F, Wang X: Induced expression of AtLEC1 and AtLEC2 differentially promotes somatic embryogenesis in transgenic tobacco plants. PLoS One. 2013, 8: e71714-doi: 10.1371/journal.pone.0071714
PubMed Central
CAS
PubMed
Google Scholar
Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldman KA, Benfey PN: The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of Arabidopsis root. Cell. 1996, 86: 423-433.
CAS
PubMed
Google Scholar
Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B: An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell. 1999, 99: 463-472.
CAS
PubMed
Google Scholar
Wysocka-Diller J, Helariutta Y, Hukaki H, Malamy J, Benfey PN: Molecular analysis of SCARECROW functions reveals a radial patterning mechanism common to root and shoot. Development. 2000, 127: 595-603.
CAS
PubMed
Google Scholar
Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey P: The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signalling. Cell. 2000, 101: 555-567.
CAS
PubMed
Google Scholar
Sabatini S, Heidstra R, Wildwater M, Scheres B: SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Gen Dev. 2003, 17: 354-358.
CAS
Google Scholar
Heidstra R, Welch D, Scheres B: Mosaic analysis using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Gen Dev. 2004, 18: 1964-1969.
CAS
Google Scholar
Vielba JM, Díaz-Sala C, Ferro E, Rico S, Lamprecht M, Abarca D, Ballester A, Sánchez C: CsSCL1 is differentially regulated upon maturation in chestnut microshoots, and is specifically expressed in rooting-competent cells. Tree Physiol. 2011, 31: 1152-1160.
CAS
PubMed
Google Scholar
Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ: Pluripotent versus totipotent plant stem cells: dependence versus autonomy?. Trends Plant Sci. 2007, 12: 245-252.
CAS
PubMed
Google Scholar
Genbank database [http://www.ncbi.nlm.nih.gov/genbank/]
Europine database [http://www.scbi.uma.es/pinedb]
Congenie database [http://congenie.org]
Dendrome database [http://dendrome.ucdavis.edu]
Bolle C: The role of GRAS proteins in plant signal transduction and development. Planta. 2004, 218: 683-692.
CAS
PubMed
Google Scholar
Oldfield CJ, Dunker K: Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem. 2014, 83: 553-584.
CAS
PubMed
Google Scholar
Steeves TA, Sussex IM: Patterns in Plant Development. 1989, Cambridge University Press, Cambridge, UK
Google Scholar
Karami O, Aghavaisi B, Pour AM: Molecular aspects of somatic-to-embryogenic transition in plants. J Chem Biol. 2009, 2: 177-190.
PubMed Central
PubMed
Google Scholar
Wang D, Manali D, Wang T, Bhat N, Hong N, Li Z, Wang L, Yan Y, Liu R, Hong Y: Identification of pluripotency genes in the Fish Medaka. Int J Biol Sci. 2011, 7: 440-451.
PubMed Central
CAS
PubMed
Google Scholar
Sun X, Xue B, Jones WT, Rikkerink EHA, Dunker AK, Uversky VN: A functionally required unfoldome from the plant kingdom: intrinsically disordered N-terminal domains of GRAS proteins are involved in molecular recognition during plant development. Plant Mol Biol. 2011, 77: 205-223.
CAS
PubMed
Google Scholar
Sun X, Jones WT, Rikkerink EHA: GRAS proteins: the versatile roles of intrinsically disordered proteins in plant signalling. Biochem J. 2012, 442: 1-12.
CAS
PubMed
Google Scholar
Sena G, Wang X, Liu HY, Hofhuis H, Birnbaum KD: Organ regeneration does not require a functional stem cell niche in plants. Nature. 2009, 457: 1150-1154.
PubMed Central
CAS
PubMed
Google Scholar
Richards DE, Peng JR, Harberd NP: Plant GRAS and metazoan STATs: one family?. Bioessays. 2000, 22: 573-577.
CAS
PubMed
Google Scholar
Trenerry MK, Della Gatta PA, Cameron-Smith D: JAK/STAT signaling and human in vitro myogenesis. BMC Physiol. 2011, 11: 6-doi:10.1186/1472-6793-11-6
PubMed Central
CAS
PubMed
Google Scholar
Liang J, Wang D, Renaud G, Wolfsberg TG, Wilson AF, Burgess SM: The stat3/socs3a pathway is a key regulator of hair cell regeneration in zebrafish. J Neurosci. 2012, 32: 10662-10673.
PubMed Central
CAS
PubMed
Google Scholar
Tian C, Wan P, Sun S, Li J, Chen M: Genome-wide analysis of the GRAS gene family in rice and Arabidopsis . Plant Mol Biol. 2004, 54: 519-532.
CAS
PubMed
Google Scholar
Lee MH, Kim B, Song SK, Heo JO, Yu NI, Lee SA, Kim M, Kim DG, Sohn SO, Lim CE, Chang KS, Lee MM, Lim J: Large-scale analysis of the GRAS gene family in Arabidopsis thaliana . Plant Mol Biol. 2008, 67: 659-670.
CAS
PubMed
Google Scholar
Canales J, Bautista R, Label P, Gomez-Maldonado J, Lesur I, Fernandez-Pozo N, Rueda-López M, Guerrero-Fernández D, Castro-Rodríguez V, Benzekri H, Cañas RA, Guevara MA, Rodrigues A, Seoane P, Teyssier C, Morel A, Ehrenmann F, Le Provost G, Lalanne C, Noirot C, Klopp C, Reymond I, García-Gutiérrez A, Trontin JF, Lelu-Walter MA, Miguel C, Cervera MT, Cantón FR, Plomion C, Harvengt L, et al: De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology. Plant Biotechnol J. 2014, 12: 286-299.
CAS
PubMed
Google Scholar
Duval I, Lachance D, Giguère I, Bomal C, Morency MJ, Pelletier G, Boyle B, MacKay JJ, Séguin A: Large-scale screening of transcription factor–promoter interactions in spruce reveals a transcriptional network involved in vascular development. J Exp Bot. 2014, 65: 2319-2333.
PubMed Central
CAS
PubMed
Google Scholar
Song XM, Liu TK, Duan WK, Ma QH, Ren J, Wang Z, Li Y, Hou XL: Genome-wide analysis of the GRAS gene family in Chinese cabbage (Brassica rapa ssp. pekinensis). Genomics. 2014, 103: 135-146.
CAS
PubMed
Google Scholar
Ralph SG, Hudgins JW, Jancsik S, Franceschi VR, Bohlmann J: Aminocyclopropane carboxylic acid synthase is a regulated step in ethylene-dependent induced conifer defense. full-length cDNA cloning of a multigene family, differential constitutive, and wound- and insect-induced expression, and cellular and subcellular localization in spruce and douglas-fir. Plant Physiol. 2007, 143: 410-424.
PubMed Central
CAS
PubMed
Google Scholar
Ralph SG, Jancsik S, Bohlmann J: Dirigent proteins in conifer defense II: extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (Picea spp.). Phytochemistry. 2007, 68: 1975-1991.
CAS
PubMed
Google Scholar
Pavy N, Pelgas B, Laroche J, Rigault P, Isabel N, Bousquet J: A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. BMC Biol. 2012, 10: 84-doi: 10.1186/1741-7007-10-84
PubMed Central
CAS
PubMed
Google Scholar
Engstrom EM: Phylogenetic analysis of GRAS proteins from moss, lycophyte and vascular plant lineages reveals that GRAS genes arose and underwent substantial diversification in the ancestral lineage common to bryophytes and vascular plants. Plant Signal Behav. 2011, 6: 850-854.
PubMed Central
CAS
PubMed
Google Scholar
Larsson E, Sundström JF, Sitbon F, von Arnold S: Expression of PaNAC01, a Picea abies CUP-SHAPED COTYLEDON orthologue, is regulated by polar auxin transport and associated with differentiation of the shoot apical meristem and formation of separated cotyledons. Ann Bot. 2012, 110: 923-934.
PubMed Central
CAS
PubMed
Google Scholar
Hedman H, Zhu T, von Arnold S, Sohlberg JJ: Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in the conifer Picea abies reveals extensive conservation as well as dynamic patterns. BMC Plant Biol. 2013, 13: 89-doi:10.1186/1471-2229-13-89
PubMed Central
CAS
PubMed
Google Scholar
Guillet-Claude C, Isabel N, Pelgas B, Bousquet J: The evolutionary implications of knox-I gene duplications in conifers: correlated evidence from phylogeny, gene mapping, and analysis of functional divergence. Mol Biol Evol. 2004, 21: 2232-2245.
CAS
PubMed
Google Scholar
Bedon F, Bomal C, Caron S, Levasseur C, Boyle B, Mansfield SD, Schmidt A, Gershenzon J, Grima-Pettenati J, Séguin A, MacKay J: Subgroup 4 R2R3-MYBs in conifer trees: gene family expansion and contribution to the isoprenoid- and flavonoid oriented responses. J Exp Bot. 2010, 61: 3847-3864.
PubMed Central
CAS
PubMed
Google Scholar
Klintenäs M, Pin PA, Benlloch R, Ingvarsson PK, Nilsson O: Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage. New Phytol. 2012, 196: 1260-1273.
PubMed
Google Scholar
Uddenberg D, Reimegård J, Clapham D, Almqvist C, von Arnold S, Emanuelsson O, Sundström JF: Early cone setting in Picea abies acrocona is associated with increased transcriptional activity of a MADS Box transcription factor. Plant Physiol. 2013, 161: 813-823.
PubMed Central
CAS
PubMed
Google Scholar
Lim J, Jung JW, Lim CE, Lee MH, Jun Kim BJ, Kim M, Bruce WB, Benfey PN: Conservation and diversification of SCARECROW in maize. Plant Mol Biol. 2005, 59: 619-630.
PubMed Central
CAS
PubMed
Google Scholar
Sun X, Rikkerink EAH, Jones WT, Uversky VN: Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology. Plant Cell. 2013, 25: 38-55.
PubMed Central
CAS
PubMed
Google Scholar
Kragelund BB, Jensen MK, Skriver K: Order by disorder in plant signaling. Trends Plant Sci. 2012, 17: 625-632.
CAS
PubMed
Google Scholar
Costantini S, Sharma A, Raucci R, Costantini M, Autiero I, Colonna G: Genealogy of an ancient protein family: the Sirtuins, a family of disordered members. BMC Evol Biol. 2013, 13: 60-doi:10.1186/1471-2148-13-60
PubMed Central
CAS
PubMed
Google Scholar
Pazos F, Pietrosemoli N, García-Martín JA, Solano R: Protein intrinsic disorder in plants. Front Plant Sci. 2013, 4: 1-doi:10.3389/fpls.2013.00363
Google Scholar
Toth-Petroczy A, Oldfield CJ, Simon I, Takagi Y, Dunker AK, Uversky VN, Fuxreiter M: Malleable machines in transcription regulation: the mediator complex. PLoS Comput Biol. 2008, 4: e1000243-
PubMed Central
PubMed
Google Scholar
Fuxreiter M, Simon I, Bondos S: Dynamic protein-DNA recognition: beyond what can be seen. Trends Biochem Sci. 2011, 36: 415-423.
CAS
PubMed
Google Scholar
Mahani A, Henriksson J, Wright APH: Origins of Myc proteins – using intrinsic protein disorder to trace distant relatives. PLoS One. 2013, 8: e75057-doi: 10.1371/journal.pone.0075057
PubMed Central
CAS
PubMed
Google Scholar
Jeong S, Bayer M, Lukowitz W: Taking the very first steps: from polarity to axial domains in the early Arabidopsis embryo. J Exp Bot. 2011, 62: 1687-1697.
CAS
PubMed
Google Scholar
Cui H, Hao Y, Kovtun M, Stolc V, Deng XW, Sakakibara H, Kojima M: Genome-wide direct target analysis reveals a role for SHORT-ROOT in root vascular patterning through cytokinin homeostasis. Plant Physiol. 2011, 157: 1221-1231.
PubMed Central
CAS
PubMed
Google Scholar
Greb T, Clarenz O, Schäfer E, Müller D, Herrero R, Schmitz G, Theres K: Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Gen Dev. 2003, 17: 1175-1187.
CAS
Google Scholar
Engstrom EM: HAM proteins promote organ indeterminacy. but how?. Plant Signal Behav. 2012, 7: 227-234.
PubMed Central
CAS
PubMed
Google Scholar
Bolle C, Koncz C, Chua NH: PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Gen Dev. 2000, 14: 1269-1278.
CAS
Google Scholar
Day RB, Shibuya N, Minami E: Identification and characterization of two new members of the GRAS gene family in rice responsive to N-acetylchitooligosaccharide elicitor. Biochim Biophys Acta. 2003, 1625: 261-268.
CAS
PubMed
Google Scholar
Day RB, Tanabe S, Koshioka M, Mitsui T, Itoh H, Ueguchi-Tanaka M, Matsuoka M, Kaku H, Shibuya N, Minami E: Two rice GRAS family genes responsive to N -acetylchitooligosaccharide elicitor are induced by phytoactive gibberellins: evidence for cross-talk between elicitor and gibberellin signaling in rice cells. Plant Mol Biol. 2004, 54: 261-272.
CAS
PubMed
Google Scholar
Xu X, Hofhuis H, Heidstra R, Sauer M, Friml J, Scheres B: A molecular framework for plant regeneration. Science. 2006, 311: 385-388.
CAS
PubMed
Google Scholar
Bohn-Courseau I: Auxin: a major regulator of organogenesis. C R Biologies. 2010, 333: 290-296.
CAS
PubMed
Google Scholar
Ahkami AH, Melzer M, Ghaffari MR, Pollmann S, Javid MG, Shahinnia F, Hajirezaei MR, Druege U: Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation. Planta. 2013, 238: 499-517.
PubMed Central
CAS
PubMed
Google Scholar
Sukumar P, Maloney GS, Muday GK: Localized induction of the ATP-Binding Cassette B19 auxin transporter enhances adventitious root Formation in Arabidopsis . Plant Physiol. 2013, 162: 1392-1405.
PubMed Central
CAS
PubMed
Google Scholar
Friml J: Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur J Cell Biol. 2010, 89: 231-235.
CAS
PubMed
Google Scholar
Grafi G, Florentin A, Ransbotyn V, Morgenstern Y: The stem cell state in plant development and in response to stress. Front Plant Sci. 2011, 2: 53-doi:10.3389/fpls.2011.00053
PubMed Central
CAS
PubMed
Google Scholar
Hao Y, Cui H: SHORT-ROOT regulates vascular patterning, but not apical meristematic activity in the Arabidopsis root through cytokinin homeostasis. Plant Signal Behav. 2012, 7: 1-4.
Google Scholar
Da Costa CT, de Almeida MR, Ruedell CM, Schwambach J, Maraschin FS, Fett-Neto AG: When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Front Plant Sci. 2013, 4: 133-doi:10.3389/fpls.2013.00133
PubMed Central
PubMed
Google Scholar
Mauriat M, Petterle A, Bellini C, Moritz T: Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. Plant J. 2014, 78: 372-384.
CAS
PubMed
Google Scholar
Greenwood MS, Díaz-Sala C, Singer PB, Decker A, Hutchison KW: Differential gene expression during maturation-caused decline in adventitious rooting ability in loblolly pine. Biology of Root Formation and Development. Edited by: Altman A, Weisel W. 1997, Plenum Press, New York, 203-207.
Google Scholar
Liu H, Wang S, Yu X, Yu J, He X, Zhang S, Shou H, Wu P: ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J. 2005, 43: 47-56.
PubMed
Google Scholar
Izhakia A, Bowman JL: KANADI and Class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis . Plant Cell. 2007, 19: 495-508.
Google Scholar
Bureau M, Rast MI, Illmer J, Simon R: JAGGED LATERAL ORGAN (JLO) controls auxin dependent patterning during development of the Arabidopsis embryo and root. Plant Mol Biol. 2010, 74: 479-491.
CAS
PubMed
Google Scholar
Feng Z, Sun X, Wang G, Liu H, Zhu J: LBD29 regulates the cell cycle progression in response to auxin during lateral root formation in Arabidopsis thaliana . Ann Bot. 2012, 110: 1-10.
PubMed Central
CAS
PubMed
Google Scholar
Rasta MI, Simon R: Arabidopsis JAGGED LATERAL ORGANS Acts with ASYMMETRIC LEAVES2 to Coordinate KNOX and PIN Expression in Shoot and Root Meristems. Plant Cell. 2012, 24: 2917-2933.
Google Scholar
Levesque MP, Vernoux T, Busch W, Cui H, Wang YJ, Blilou I, Hassan H, Nakajima K, Matsumoto N, Lohmann JU, Scheres B, Benfey PN: Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis . PLoS Biol. 2006, 4: e143-DOI: 10.1371/journal.pbio.0040143,
PubMed Central
PubMed
Google Scholar
Sozzani R, Cui H, Moreno-Risueno MA, Busch W, Van Norman JM, Vernoux T, Brady SM, Dewitte W, Murray JAH, Benfey PN: Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature. 2010, 466: 128-132.
PubMed Central
CAS
PubMed
Google Scholar
Legué V, Rigald A, Bhalerao RP: Adventitious root formation in tree species: involvement of transcription factors. Physiol Plant. 2014, 151: 192-198.
PubMed
Google Scholar
Sena G, Birnbaum KD: Built to rebuild: in search of organizing principles in plant regeneration. Curr Opin Genet Dev. 2010, 20: 460-465.
PubMed Central
CAS
PubMed
Google Scholar
Smith D: Growth medium. US Patent. 1996, No. 5.565.355
Google Scholar
Néron B, Ménager H, Maufrais C, Joly N, Maupetit J, Letort S, Carrere S, Tuffery P, Letondal C: Mobyle: a new full web bioinformatics framework. Bioinformatics. 2009, 25: 3005-3011.
PubMed Central
PubMed
Google Scholar
Nishiyama T, Fujita T, Shin-I T, Seki M, Nishide H, Uchiyama I, Kamiya A, Carninci P, Hayashizaki Y, Shinozaki K, Kohara Y, Hasebe M: Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proc Natl Acad Sci U S A. 2003, 100: 8007-8012.
PubMed Central
CAS
PubMed
Google Scholar
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O: Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008, 36 (suppl 2): W465-W469.
PubMed Central
CAS
PubMed
Google Scholar
Ishida T, Kinoshita K: PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res. 2007, 35 (suppl 2): W460-W464.
PubMed Central
PubMed
Google Scholar
Dosztá S, Csizmók V, Tompa P, Simon I: The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol. 2005, 347: 827-839.
Google Scholar
Sánchez MC, Smith AG, Hackett WP: Localized expression of a proline-rich protein gene in juvenile and mature ivy petioles in relation to rooting potential. Physiol Plant. 1995, 93: 207-216.
Google Scholar