Smith SE, Read DJ: Mycorrhizal Symbiosis. 3rd edition. Academic, New York, 2008.
Google Scholar
Wang B, Qiu YL: Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 2006, 16 (5): 299-363. 10.1007/s00572-005-0033-6.
Article
CAS
PubMed
Google Scholar
Brundrett MC: Coevolution of roots and mycorrhizas of land plants. New Phytol. 2002, 154 (2): 275-304. 10.1046/j.1469-8137.2002.00397.x.
Article
Google Scholar
Gutjahr C, Parniske M: Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol. 2013, 29: 593-617. 10.1146/annurev-cellbio-101512-122413.
Article
CAS
PubMed
Google Scholar
Delaux PM, Sejalon-Delmas N, Bécard G, Ané JM: Evolution of the plant-microbe symbiotic ‘toolkit’. Trends Plant Sci. 2013, 18 (6): 298-304. 10.1016/j.tplants.2013.01.008.
Article
CAS
PubMed
Google Scholar
Wang B, Yeun LH, Xue JY, Liu Y, Ane JM, Qiu YL: Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol. 2010, 186 (2): 514-525. 10.1111/j.1469-8137.2009.03137.x.
Article
PubMed
Google Scholar
Redecker D, Kodner R, Graham LE: Glomalean fungi from the Ordovician. Science. 2000, 289 (5486): 1920-1921. 10.1126/science.289.5486.1920.
Article
CAS
PubMed
Google Scholar
Kistner C, Parniske M: Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci. 2002, 7 (11): 511-518. 10.1016/S1360-1385(02)02356-7.
Article
CAS
PubMed
Google Scholar
Sprent JI, James EK: Legume evolution: Where do nodules and mycorrhizas fit in?. Plant Physiol. 2007, 144 (2): 575-581. 10.1104/pp.107.096156.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sprent JI: 60 Ma of legume nodulation. What’s new? What’s changing?. J Exp Bot. 2008, 59 (5): 1081-1084. 10.1093/jxb/erm286.
Article
CAS
PubMed
Google Scholar
Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P, Gherbi H, Queiroux C, Da Silva C, Wincker P, Normand P, Bogusz D: Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol. 2011, 156 (2): 700-711. 10.1104/pp.111.174151.
Article
PubMed Central
CAS
PubMed
Google Scholar
Svistoonoff S, Benabdoun FM, Nambiar-Veetil M, Imanishi L, Vaissayre V, Cesari S, Diagne N, Hocher V, de Billy F, Bonneau J, Wall L, Ykhlef N, Rosenberg C, Bogusz D, Franche C, Gherbi H: The independent acquisition of plant root nitrogen-fixing symbiosis in fabids recruited the same genetic pathway for nodule organogenesis. Plos One. 2013, 8 (5): e64515-10.1371/journal.pone.0064515. doi:10.1371/journal.pone.0064515
Article
PubMed Central
CAS
PubMed
Google Scholar
Oldroyd GED: Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol. 2013, 11 (4): 252-263. 10.1038/nrmicro2990.
Article
CAS
PubMed
Google Scholar
Oldroyd GED, Downie JA: Nuclear calcium changes at the core of symbiosis signalling. Curr Opin Plant Biol. 2006, 9 (4): 351-357. 10.1016/j.pbi.2006.05.003.
Article
CAS
PubMed
Google Scholar
Singh S, Parniske M: Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis. Curr Opin Plant Biol. 2012, 15 (4): 444-453. 10.1016/j.pbi.2012.04.002.
Article
CAS
PubMed
Google Scholar
Feddermann N, Duvvuru Muni RR, Zeier T, Stuurman J, Ercolin F, Schorderet M, Reinhardt D: The PAM1 gene of petunia, required for intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi, encodes a homologue of VAPYRIN. Plant J. 2010, 64 (3): 470-481. 10.1111/j.1365-313X.2010.04341.x.
Article
CAS
PubMed
Google Scholar
Pumplin N, Mondo SJ, Topp S, Starker CG, Gantt JS, Harrison MJ: Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant J. 2010, 61 (3): 482-494. 10.1111/j.1365-313X.2009.04072.x.
Article
CAS
PubMed
Google Scholar
Feddermann N, Reinhardt D: Conserved residues in the ankyrin domain of VAPYRIN indicate potential protein-protein interaction surfaces. Plant Signaling Behav. 2011, 6 (5): 680-684. 10.4161/psb.6.5.14972.
Article
CAS
Google Scholar
Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D: Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J. 2010, 64: 1002-1017. 10.1111/j.1365-313X.2010.04385.x.
Article
CAS
PubMed
Google Scholar
Rich MK, Schorderet M, Reinhardt D: The role of the cell wall compartment in mutualistic symbioses of plants. Front Plant Sci. 2014, 5: 238-10.3389/fpls.2014.00238.
Article
PubMed Central
PubMed
Google Scholar
Gobbato E, Marsh JF, Vernie T, Wang E, Maillet F, Kim J, Miller JB, Sun J, Bano SA, Ratet P, Mysore KS, Dénarié J, Schultze M, Oldroyd GE: A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol. 2012, 22 (23): 2236-2241. 10.1016/j.cub.2012.09.044.
Article
CAS
PubMed
Google Scholar
Zhang Q, Blaylock LA, Harrison MJ: Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell. 2010, 22 (5): 1483-1497. 10.1105/tpc.110.074955.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harrison MJ, Dewbre GR, Liu JY: A phosphate transporter from Medicago truncatula involved in the acquisiton of phosphate released by arbuscular mycorrhizal fungi. Plant Cell. 2002, 14 (10): 2413-2429. 10.1105/tpc.004861.
Article
PubMed Central
CAS
PubMed
Google Scholar
Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ: A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A. 2007, 104 (5): 1720-1725. 10.1073/pnas.0608136104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schreiber F, Sonnhammer ELL: Hieranoid: Hierarchical Orthology Inference. J Mol Biol. 2013, 425 (11): 2072-2081. 10.1016/j.jmb.2013.02.018.
Article
CAS
PubMed
Google Scholar
Murray JD, Duvvuru Muni R, Torres-Jerez I, Tang Y, Allen S, Andriankaja M, Li G, Laxmi A, Cheng X, Wen J, Vaughan D, Schultze M, Sun J, Charpentier M, Oldroyd G, Tadege M, Ratet P, Mysore KS, Chen R, Udvardi MK: Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula . Plant J. 2011, 65 (2): 244-252. 10.1111/j.1365-313X.2010.04415.x.
Article
CAS
PubMed
Google Scholar
Apweiler R, Bateman A, Martin MJ, O’Donovan C, Magrane M, Alam-Faruque Y, Alpi E, Antunes R, Arganiska J, Casanova EB, Bely B, Bingley M, Bonilla C, Britto R, Bursteinas B, Mun Chan W, Chavali G, Cibrian-Uhalte E, Da Silva A, De Giorgi M, Fazzini F, Gane P, Castro LG, Garmiri P, Hatton-Ellis E, Hieta R, Huntley R, Legge D, Liu W, Luo J, et al: Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 2014, 42 (D1): D191-D198. 10.1093/nar/gkt1140.
Article
Google Scholar
Groth M, Takeda N, Perry J, Uchida H, Draexl S, Brachmann A, Sato S, Tabata S, Kawaguchi M, Wang TL, Parniske M: NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. Plant Cell. 2010, 22: 2509-2526. 10.1105/tpc.109.069807.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EMH, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, Jensen TH, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J: A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci U S A. 2006, 103 (2): 359-364. 10.1073/pnas.0508883103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H, Asamizu E, Sato S, Tabata S, Imaizumi-Anraku H, Umehara Y, Kouchi H, Murooka Y, Szczyglowski K, Downie JA, Parniske M, Hayashi M, Kawaguchi M: NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell. 2007, 19 (2): 610-624. 10.1105/tpc.106.046938.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fiorilli V, Catoni M, Miozzi L, Novero M, Accotto GP, Lanfranco L: Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytol. 2009, 184 (4): 975-987. 10.1111/j.1469-8137.2009.03031.x.
Article
CAS
PubMed
Google Scholar
Guether M, Balestrini R, Hannah M, He J, Udvardi M, Bonfante P: Genome-wide reprogramming of regulatory networks, cell wall and membrane biogenesis during arbuscular-mycorrhizal symbiosis in Lotus japonicus . New Phytol. 2009, 182 (1): 200-212. 10.1111/j.1469-8137.2008.02725.x.
Article
CAS
PubMed
Google Scholar
Güimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ionnidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U: Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci U S A. 2005, 102 (22): 8066-8070. 10.1073/pnas.0502999102.
Article
PubMed Central
PubMed
Google Scholar
Hohnjec N, Vieweg ME, Puhler A, Becker A, Küster H: Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol. 2005, 137 (4): 1283-1301. 10.1104/pp.104.056572.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu JY, Blaylock LA, Endre G, Cho J, Town CD, VandenBosch KA, Harrison MJ: Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell. 2003, 15 (9): 2106-2123. 10.1105/tpc.014183.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lévy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ané JM, Lauber E, Bisseling T, Dénarié J, Rosenberg C, Debellé F: A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science. 2004, 303 (5662): 1361-1364. 10.1126/science.1093038.
Article
PubMed
Google Scholar
Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GED, Long SR: A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning. Proc Natl Acad Sci U S A. 2004, 101 (13): 4701-4705. 10.1073/pnas.0400595101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nagy F, Karandashov V, Chague W, Kalinkevich K, Tamasloukht M, Xu GH, Jakobsen I, Levy AA, Amrhein N, Bucher M: The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J. 2005, 42 (2): 236-250. 10.1111/j.1365-313X.2005.02364.x.
Article
CAS
PubMed
Google Scholar
Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M: A phosphate transporter expressed in arbuscule-containing cells in potato. Nature. 2001, 414 (6862): 462-466. 10.1038/35106601.
Article
CAS
PubMed
Google Scholar
Wegmüller S, Svistoonoff S, Reinhardt D, Stuurman J, Amrhein N, Bucher M: A transgenic dTph1 insertional mutagenesis system for forward genetics in mycorrhizal phosphate transport of Petunia. Plant J. 2008, 54 (6): 1115-1127. 10.1111/j.1365-313X.2008.03474.x.
Article
PubMed
Google Scholar
Guether M, Neuhauser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P: A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol. 2009, 150 (1): 73-83. 10.1104/pp.109.136390.
Article
PubMed Central
CAS
PubMed
Google Scholar
Katoh K, Standley DM: MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013, 30 (4): 772-780. 10.1093/molbev/mst010.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shaikhali J, Noren L, Barajas-Lopez JD, Srivastava V, Konig J, Sauer UH, Wingsle G, Dietz KJ, Strand A: Redox-mediated mechanisms regulate DNA binding activity of the G-group of basic region leucine zipper (bZIP) transcription factors in Arabidopsis . J Biol Chem. 2012, 287 (33): 27510-27525. 10.1074/jbc.M112.361394.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vickers CE, Xue GP, Gresshoff PM: A novel cis-acting element, ESP, contributes to high-level endosperm-specific expression in an oat globulin promoter. Plant Mol Biol. 2006, 62 (1–2): 195-214. 10.1007/s11103-006-9014-1.
Article
CAS
PubMed
Google Scholar
Zhou P, Yang F, Yu JJ, Ao GM, Zhao Q: Several cis-elements including a palindrome involved in pollen-specific activity of SBgLR promoter. Plant Cell Rep. 2010, 29 (5): 503-511. 10.1007/s00299-010-0839-3.
Article
CAS
PubMed
Google Scholar
Chen AQ, Gu MA, Sun SB, Zhu LL, Hong SA, Xu GH: Identification of two conserved cis-acting elements, MYCS and P1BS, involved in the regulation of mycorrhiza-activated phosphate transporters in eudicot species. New Phytol. 2012, 189 (4): 1157-1169. 10.1111/j.1469-8137.2010.03556.x.
Article
Google Scholar
Lota F, Wegmüller S, Buer B, Sato S, Bräutigam A, Hanf B, Bucher M: The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus. Plant J. 2013, 74 (2): 280-293. 10.1111/tpj.12120.
Article
CAS
PubMed
Google Scholar
Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Gronlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J: Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature. 2003, 425 (6958): 585-592. 10.1038/nature02039.
Article
CAS
PubMed
Google Scholar
Markham JE, Lynch DV, Napier JA, Dunn TM, Cahoon EB: Plant sphingolipids: function follows form. Curr Opin Plant Biol. 2013, 16 (3): 350-357. 10.1016/j.pbi.2013.02.009.
Article
CAS
PubMed
Google Scholar
Kutchan TM: Heterologous expression of alkaloid biosynthetic genes - A review. Gene. 1996, 179 (1): 73-81. 10.1016/S0378-1119(96)00426-X.
Article
CAS
PubMed
Google Scholar
Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y: Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature. 2005, 435 (7043): 819-823. 10.1038/nature03610.
Article
CAS
PubMed
Google Scholar
Tian CJ, Kasiborski B, Koul R, Lammers PJ, Bücking H, Shachar-Hill Y: Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: Gene characterization and the coordination of expression with nitrogen flux. Plant Physiol. 2010, 153 (3): 1175-1187. 10.1104/pp.110.156430.
Article
PubMed Central
CAS
PubMed
Google Scholar
Miyawaki K, Tabata R, Sawa S: Evolutionarily conserved CLE peptide signaling in plant development, symbiosis, and parasitism. Curr Opin Plant Biol. 2013, 16 (5): 598-606. 10.1016/j.pbi.2013.08.008.
Article
CAS
PubMed
Google Scholar
Chen CY, Ané JM, Zhu HY: OsIPD3, an ortholog of the Medicago truncatula DMI3 interacting protein IPD3, is required for mycorrhizal symbiosis in rice. New Phytol. 2008, 180 (2): 311-315. 10.1111/j.1469-8137.2008.02612.x.
Article
CAS
PubMed
Google Scholar
Horvath B, Yeun LH, Domonkos A, Halasz G, Gobbato E, Ayaydin F, Miro K, Hirsch S, Sun JH, Tadege M, Ratet P, Mysore KS, Ané JM, Oldroyd GE, Kaló P: Medicago truncatula IPD3 Is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. Mol Plant-Microbe Interact. 2011, 24 (11): 1345-1358. 10.1094/MPMI-01-11-0015.
Article
CAS
PubMed
Google Scholar
Yano K, Yoshida S, Muller J, Singh S, Banba M, Vickers K, Markmann K, White C, Schuller B, Sato S, Asamizu E, Tabata S, Murooka Y, Perry J, Wang TL, Kawaguchi M, Imaizumi-Anraku H, Hayashi M, Parniske M: CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci U S A. 2008, 105 (51): 20540-20545. 10.1073/pnas.0806858105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Scheller HV, Ulvskov P: Hemicelluloses. Annu Rev Plant Biol. 2010, 61: 263-289. 10.1146/annurev-arplant-042809-112315.
Article
CAS
PubMed
Google Scholar
Stein JC, Howlett B, Boyes DC, Nasrallah ME, Nasrallah JB: Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea . Proc Natl Acad Sci U S A. 1991, 88 (19): 8816-8820. 10.1073/pnas.88.19.8816.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nasrallah JB, Nasrallah ME: S-locus receptor kinase signalling. Biochem Soc Trans. 2014, 42: 313-319. 10.1042/BST20130222.
Article
CAS
PubMed
Google Scholar
Walker JC, Zhang R: Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica . Nature. 1990, 345 (6277): 743-746. 10.1038/345743a0.
Article
CAS
PubMed
Google Scholar
Hernandez-Garcia CM, Finer JJ: Identification and validation of promoters and cis-acting regulatory elements. Plant Sci. 2014, 217: 109-119. 10.1016/j.plantsci.2013.12.007.
Article
PubMed
Google Scholar
Kim MJ, Ruzicka D, Shin R, Schachtman DP: The Arabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol Plant. 2012, 5 (5): 1042-1057. 10.1093/mp/sss003.
Article
CAS
PubMed
Google Scholar
Ramkumar G, Madhav MS, Biswal AK, Rama Devi SJS, Sakthivel K, Mohan MK, Umakanth B, Mangrauthia SK, Sundaram RM, Viraktamath BC: Genome-wide identification and characterization of transcription factor binding motifs of NBS-LRR genes in rice and Arabidopsis . J Genomes Exomes. 2014, 3: 7-15.
Google Scholar
Cheng MC, Liao PM, Kuo WW, Lin TP: The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol. 2013, 162 (3): 1566-1582. 10.1104/pp.113.221911.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hao DY, Yamasaki K, Sarai A, Ohme-Takagi M: Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochemistry. 2002, 41 (13): 4202-4208. 10.1021/bi015979v.
Article
CAS
PubMed
Google Scholar
Hu FY, Wang D, Zhao XQ, Zhang T, Sun HX, Zhu LH, Zhang F, Li LJ, Li QO, Tao DY, Fu B, Li Z: Identification of rhizome-specific genes by genome-wide differential expression analysis in Oryza longistaminata . BMC Plant Biol. 2011, 11: 18-10.1186/1471-2229-11-18.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lu X, Jiang WM, Zhang L, Zhang F, Zhang FY, Shen Q, Wang GF, Tang KX: AaERF1 Positively Regulates the Resistance to Botrytis cinerea in Artemisia annua. Plos One. 2013, 8 (2): e57657-10.1371/journal.pone.0057657. doi:10.1371/journal.pone.0057657
Article
PubMed Central
CAS
PubMed
Google Scholar
Pirrello J, Prasad BCN, Zhang WS, Chen KS, Mila I, Zouine M, Latche A, Pech JC, Ohme-Takagi M, Regad F, Bouzayen M: Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biol. 2012, 12: 190-10.1186/1471-2229-12-190.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shoji T, Mishima M, Hashimoto T: Divergent DNA-Binding Specificities of a Group of ETHYLENE RESPONSE FACTOR Transcription Factors Involved in Plant Defense. Plant Physiol. 2013, 162 (2): 977-990. 10.1104/pp.113.217455.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhou JM, Tang XY, Martin GB: The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J. 1997, 16 (11): 3207-3218. 10.1093/emboj/16.11.3207.
Article
PubMed Central
CAS
PubMed
Google Scholar
Franken P, Gnädinger F: Analysis of parsley arbuscular endomycorrhiza - Infection, development and messenger-RNA levels of defense-related genes. Mol Plant-Microbe Interact. 1994, 7 (5): 612-620. 10.1094/MPMI-7-0612.
Article
CAS
Google Scholar
Gallou A, Declerck S, Cranenbrouck S: Transcriptional regulation of defence genes and involvement of the WRKY transcription factor in arbuscular mycorrhizal potato root colonization. Funct Integr Genom. 2012, 12 (1): 183-198. 10.1007/s10142-011-0241-4.
Article
CAS
Google Scholar
Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Kuster H, Krajinski F: Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol Plant-Microbe Interact. 2003, 16 (4): 306-314. 10.1094/MPMI.2003.16.4.306.
Article
CAS
PubMed
Google Scholar
Fukai E, Soyano T, Umehara Y, Nakayama S, Hirakawa H, Tabata S, Sato S, Hayashi M: Establishment of a Lotus japonicus gene tagging population using the exon-targeting endogenous retrotransposon LORE1. Plant J. 2012, 69 (4): 720-730. 10.1111/j.1365-313X.2011.04826.x.
Article
CAS
PubMed
Google Scholar
Tadege M, Ratet P, Mysore KS: Insertional mutagenesis: a Swiss army knife for functional genomics of Medicago truncatula. Trends Plant Sci. 2005, 10 (5): 229-235. 10.1016/j.tplants.2005.03.009.
Article
CAS
PubMed
Google Scholar
Vandenbussche M, Janssen A, Zethof J, van Orsouw N, Peters J, van Eijk MJT, Rijpkema AS, Schneiders H, Santhanam P, de Been M, van Tunen A, Gerats T: Generation of a 3D indexed Petunia insertion database for reverse genetics. Plant J. 2008, 54 (6): 1105-1114. 10.1111/j.1365-313X.2008.03482.x.
Article
CAS
PubMed
Google Scholar
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O: Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008, 36: W465-W469. 10.1093/nar/gkn180.
Article
PubMed Central
CAS
PubMed
Google Scholar
Anisimova M, Gascuel O: Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol. 2006, 55 (4): 539-552. 10.1080/10635150600755453.
Article
PubMed
Google Scholar
Kersey PJ, Staines DM, Lawson D, Kulesha E, Derwent P, Humphrey JC, Hughes DST, Keenan S, Kerhornou A, Koscielny G, Langridge N, McDowall MD, Megy K, Maheswari U, Nuhn M, Paulini M, Pedro H, Toneva I, Wilson D, Yates A, Birney E: Ensembl Genomes: an integrative resource for genome-scale data from non-vertebrate species. Nucleic Acids Res. 2012, 40 (D1): D91-D97. 10.1093/nar/gkr895.
Article
PubMed Central
CAS
PubMed
Google Scholar
Junier T, Zdobnov EM: The Newick utilities: high-throughput phylogenetic tree processing in the Unix shell. Bioinformatics. 2010, 26 (13): 1669-1670. 10.1093/bioinformatics/btq243.
Article
PubMed Central
CAS
PubMed
Google Scholar
Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai X, Zhao P, Tang Y, Udvardi M, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai X, Zhao P, Tang Y, Udvardi M: A gene expression atlas of the model legume Medicago truncatula . Plant J. 2008, 55 (3): 504-513. 10.1111/j.1365-313X.2008.03519.x.
Article
CAS
PubMed
Google Scholar
He J, Benedito VA, Wang MY, Murray JD, Zhao PX, Tang YH, Udvardi MK: The Medicago truncatula gene expression atlas web server. BMC Bioinformatics. 2009, 10: 441-10.1186/1471-2105-10-441.
Article
PubMed Central
PubMed
Google Scholar
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011, 27 (3): 431-432. 10.1093/bioinformatics/btq675.
Article
PubMed Central
CAS
PubMed
Google Scholar
Morris JH, Apeltsin L, Newman AM, Baumbach J, Wittkop T, Su G, Bader GD, Ferrin TE: clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinformatics. 2011, 12: 436-10.1186/1471-2105-12-436.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren JY, Li WW, Noble WS: MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009, 37: W202-W208. 10.1093/nar/gkp335.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rice P, Longden I, Bleasby A: EMBOSS: The European molecular biology open software suite. Trends Genet. 2000, 16 (6): 276-277. 10.1016/S0168-9525(00)02024-2.
Article
CAS
PubMed
Google Scholar
Delaux PM, Varala K, Edger PP, Coruzzi GM, Pires JC, Ané JM: Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet. 2014, 10 (7): e1004487-10.1371/journal.pgen.1004487.
Article
PubMed Central
PubMed
Google Scholar