McCaskill D, Croteau R: Isopentenyl diphosphate is the terminal product of the deoxyxylulose-5-phosphate pathway for terpenoid biosynthesis in plants. Tetrahedron Lett. 1999, 40 (4): 653-656. 10.1016/S0040-4039(98)02496-4.
Article
CAS
Google Scholar
Lange BM, Turner GW: Terpenoid biosynthesis in trichomes°Current status and future opportunities. Plant Biotechnol J. 2013, 11 (1): 2-22. 10.1111/j.1467-7652.2012.00737.x.
Article
CAS
PubMed
Google Scholar
Langenheim JH: Higher plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol. 1994, 20 (6): 1223-1280. 10.1007/BF02059809.
Article
CAS
PubMed
Google Scholar
Glas JJ, Schimmel BC, Alba JM, Escobar-Bravo R, Schuurink RC, Kant MR: Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci. 2012, 13 (12): 17077-17103. 10.3390/ijms131217077.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tissier A: Glandular trichomes: what comes after expressed sequence tags?. Plant J. 2012, 70 (1): 51-68. 10.1111/j.1365-313X.2012.04913.x.
Article
CAS
PubMed
Google Scholar
Lange BM, Mahmoud SS, Wildung MR, Turner GW, Davis EM, Lange I, Baker RC, Boydston RA, Croteau RB: Improving peppermint essential oil yield and composition by metabolic engineering. Proc Natl Acad Sci U S A. 2011, 108 (41): 16944-16949. 10.1073/pnas.1111558108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Saharkhiz MJ, Motamedi M, Zomorodian K, Pakshir K, Miri R, Hemyari K: Chemical composition, antifungal and antibiofilm activities of the essential oil of mentha piperita L. ISRN Phar. 2012, 2012: 718645-
Google Scholar
Chauhan RS, Kaul MK, Shahi AK, Kumar A, Ram G, Tawa A: Chemical composition of essential oils in Mentha spicata L. accession [IIIM(J)26] from North-West Himalayan region, India. Ind Crops Prod. 2009, 29 (2–3): 654-656. 10.1016/j.indcrop.2008.12.003.
Article
CAS
Google Scholar
Lange BM, Wildung MR, Stauber EJ, Sanchez C, Pouchnik D, Croteau R: Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc Natl Acad Sci U S A. 2000, 97 (6): 2934-2939. 10.1073/pnas.97.6.2934.
Article
PubMed Central
CAS
PubMed
Google Scholar
Croteau RB, Davis EM, Ringer KL, Wildung MR: (−)-Menthol biosynthesis and molecular genetics. Naturwissenschaften. 2005, 92 (12): 562-577. 10.1007/s00114-005-0055-0.
Article
CAS
PubMed
Google Scholar
Champagne A, Boutry M: Proteomic snapshot of spearmint (Mentha spicata L.) leaf trichomes: a genuine terpenoid factory. Proteomics. 2013, 13 (22): 3327-3332. 10.1002/pmic.201300280.
Article
CAS
PubMed
Google Scholar
Turner GW, Gershenzon J, Croteau RB: Development of peltate glandular trichomes of peppermint. Plant Physiol. 2000, 124 (2): 665-680. 10.1104/pp.124.2.665.
Article
PubMed Central
CAS
PubMed
Google Scholar
Burbott AJ, Loomis WD: Evidence for metabolic turnover of monoterpenes in peppermint. Plant Physiol. 1969, 44 (2): 173-179. 10.1104/pp.44.2.173.
Article
PubMed Central
CAS
PubMed
Google Scholar
Croteau R, Martinkus C: Metabolism of monoterpenes: demonstration of (+)-neomenthyl-beta-d-glucoside as a major metabolite of (−)-menthone in peppermint (mentha piperita). Plant Physiol. 1979, 64 (2): 169-175. 10.1104/pp.64.2.169.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maffei M, Gallino M, Sacco T: Glandular trichomes and essential oils of developing leaves in mentha viridis lavanduliodora. Planta Med. 1986, 52 (03): 187-193. 10.1055/s-2007-969118.
Article
Google Scholar
Brun N, Colson M, Perrin A, Voirin B: Chemical and morphological studies of the effects of ageing on monoterpene composition in Mentha × piperita leaves. Can J Bot. 1991, 69 (10): 2271-2278. 10.1139/b91-285.
Article
CAS
Google Scholar
Gershenzon J, McConkey ME, Croteau RB: Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiol. 2000, 122 (1): 205-214. 10.1104/pp.122.1.205.
Article
PubMed Central
CAS
PubMed
Google Scholar
McConkey ME, Gershenzon J, Croteau RB: Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint. Plant Physiol. 2000, 122 (1): 215-224. 10.1104/pp.122.1.215.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kjonaas R, Croteau R: Demonstration that limonene is the first cyclic intermediate in the biosynthesis of oxygenated p-menthane monoterpenes in Mentha piperita and other Mentha species. Arch Biochem Biophys. 1983, 220 (1): 79-89. 10.1016/0003-9861(83)90389-2.
Article
CAS
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011, 29 (7): 644-652. 10.1038/nbt.1883.
Article
PubMed Central
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012, 9 (4): 357-359. 10.1038/nmeth.1923.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li B, Dewey CN: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011, 12: 323-10.1186/1471-2105-12-323.
Article
PubMed Central
CAS
PubMed
Google Scholar
Weitzel C, Simonsen H: Cytochrome P450-enzymes involved in the biosynthesis of mono- and sesquiterpenes. Phytochem Rev 2013, 1–18.,
Choi YE, Lim S, Kim HJ, Han JY, Lee MH, Yang Y, Kim JA, Kim YS: Tobacco NtLTP1, a glandular-specific lipid transfer protein, is required for lipid secretion from glandular trichomes. Plant J. 2012, 70 (3): 480-491. 10.1111/j.1365-313X.2011.04886.x.
Article
CAS
PubMed
Google Scholar
Yazaki K: ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett. 2006, 580 (4): 1183-1191. 10.1016/j.febslet.2005.12.009.
Article
CAS
PubMed
Google Scholar
Kruger NJ, von Schaewen A: The oxidative pentose phosphate pathway: structure and organisation. Curr Opin Plant Biol. 2003, 6 (3): 236-246. 10.1016/S1369-5266(03)00039-6.
Article
CAS
PubMed
Google Scholar
Sturm A, Tang GQ: The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci. 1999, 4 (10): 401-407. 10.1016/S1360-1385(99)01470-3.
Article
PubMed
Google Scholar
Fischer K, Weber A: Transport of carbon in non-green plastids. Trends Plant Sci. 2002, 7 (8): 345-351. 10.1016/S1360-1385(02)02291-4.
Article
CAS
PubMed
Google Scholar
Flugge UI, Hausler RE, Ludewig F, Gierth M: The role of transporters in supplying energy to plant plastids. J Exp Bot. 2011, 62 (7): 2381-2392. 10.1093/jxb/erq361.
Article
PubMed
Google Scholar
Turner GW, Croteau R: Organization of monoterpene biosynthesis in Mentha. Immunocytochemical localizations of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductase. Plant Physiol. 2004, 136 (4): 4215-4227. 10.1104/pp.104.050229.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang C, Ye Z: Trichomes as models for studying plant cell differentiation. Cell Mol Life Sci. 2013, 70 (11): 1937-1948. 10.1007/s00018-012-1147-6.
Article
CAS
PubMed
Google Scholar
Ishida T, Kurata T, Okada K, Wada T: A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol. 2008, 59: 365-386. 10.1146/annurev.arplant.59.032607.092949.
Article
CAS
PubMed
Google Scholar
Vranova E, Coman D, Gruissem W: Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol. 2013, 64: 665-700. 10.1146/annurev-arplant-050312-120116.
Article
CAS
PubMed
Google Scholar
Bruckner K, Tissier A: High-level diterpene production by transient expression in Nicotiana benthamiana. Plant Methods. 2013, 9 (1): 46-10.1186/1746-4811-9-46.
Article
PubMed Central
PubMed
Google Scholar
Cordoba E, Porta H, Arroyo A, San Roman C, Medina L, Rodriguez-Concepcion M, Leon P: Functional characterization of the three genes encoding 1-deoxy-D-xylulose 5-phosphate synthase in maize. J Exp Bot. 2011, 62 (6): 2023-2038. 10.1093/jxb/erq393.
Article
CAS
PubMed
Google Scholar
Walter MH, Hans J, Strack D: Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant J. 2002, 31 (3): 243-254. 10.1046/j.1365-313X.2002.01352.x.
Article
CAS
PubMed
Google Scholar
Kim BR, Kim SU, Chang YJ: Differential expression of three 1-deoxy-D: −xylulose-5-phosphate synthase genes in rice. Biotechnol Lett. 2005, 27 (14): 997-1001. 10.1007/s10529-005-7849-1.
Article
CAS
PubMed
Google Scholar
Kim SM, Kuzuyama T, Chang YJ, Song KS, Kim SU: Identification of class 2 1-deoxy-D-xylulose 5-phosphate synthase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase genes from Ginkgo biloba and their transcription in embryo culture with respect to ginkgolide biosynthesis. Planta Med. 2006, 72 (3): 234-240. 10.1055/s-2005-916180.
Article
CAS
PubMed
Google Scholar
Kim YB, Kim SM, Kang MK, Kuzuyama T, Lee JK, Park SC, Shin SC, Kim SU: Regulation of resin acid synthesis in Pinus densiflora by differential transcription of genes encoding multiple 1-deoxy-D-xylulose 5-phosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase genes. Tree Physiol. 2009, 29 (5): 737-749. 10.1093/treephys/tpp002.
Article
CAS
PubMed
Google Scholar
Phillips MA, Walter MH, Ralph SG, Dabrowska P, Luck K, Uros EM, Boland W, Strack D, Rodriguez-Concepcion M, Bohlmann J, Gershenzon J: Functional identification and differential expression of 1-deoxy-D-xylulose 5-phosphate synthase in induced terpenoid resin formation of Norway spruce (Picea abies). Plant Mol Biol. 2007, 65 (3): 243-257. 10.1007/s11103-007-9212-5.
Article
CAS
PubMed
Google Scholar
Kim SM, Kuzuyama T, Kobayashi A, Sando T, Chang YJ, Kim SU: 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS) is encoded by multicopy genes in gymnosperms Ginkgo biloba and Pinus taeda. Planta. 2008, 227 (2): 287-298. 10.1007/s00425-007-0616-x.
Article
CAS
PubMed
Google Scholar
Crock J, Wildung M, Croteau R: Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-beta-farnesene. Proc Natl Acad Sci U S A. 1997, 94 (24): 12833-12838. 10.1073/pnas.94.24.12833.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang W, Wang Y, Zhang Q, Qi Y, Guo D: Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics. 2009, 10: 465-10.1186/1471-2164-10-465.
Article
PubMed Central
PubMed
Google Scholar
Wang G, Tian L, Aziz N, Broun P, Dai X, He J, King A, Zhao PX, Dixon RA: Terpene biosynthesis in glandular trichomes of hop. Plant Physiol. 2008, 148 (3): 1254-1266. 10.1104/pp.108.125187.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J: The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci U S A. 2005, 102 (3): 933-938. 10.1073/pnas.0407360102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, Zenk MH: Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci U S A. 1997, 94 (20): 10600-10605. 10.1073/pnas.94.20.10600.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ: Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem. 2003, 278 (29): 26666-26676. 10.1074/jbc.M302526200.
Article
CAS
PubMed
Google Scholar
Burke C, Croteau R: Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate. J Biol Chem. 2002, 277 (5): 3141-3149. 10.1074/jbc.M105900200.
Article
CAS
PubMed
Google Scholar
Chang TH, Hsieh FL, Ko TP, Teng KH, Liang PH, Wang AH: Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation. Plant Cell. 2010, 22 (2): 454-467. 10.1105/tpc.109.071738.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lupien S, Karp F, Wildung M, Croteau R: Regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha) species: cDNA isolation, characterization, and functional expression of (−)-4S-limonene-3-hydroxylase and (−)-4S-limonene-6-hydroxylase. Arch Biochem Biophys. 1999, 368 (1): 181-192. 10.1006/abbi.1999.1298.
Article
CAS
PubMed
Google Scholar
Croteau R, Karp F, Wagschal KC, Satterwhite DM, Hyatt DC, Skotland CB: Biochemical characterization of a spearmint mutant that resembles peppermint in monoterpene content. Plant Physiol. 1991, 96 (3): 744-752. 10.1104/pp.96.3.744.
Article
PubMed Central
CAS
PubMed
Google Scholar
Colby SM, Alonso WR, Katahira EJ, McGarvey DJ, Croteau R: 4S-limonene synthase from the oil glands of spearmint (Mentha spicata). cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase. J Biol Chem. 1993, 268 (31): 23016-23024.
CAS
PubMed
Google Scholar
Prosser IM, Adams RJ, Beale MH, Hawkins ND, Phillips AL, Pickett JA, Field LM: Cloning and functional characterisation of a cis-muuroladiene synthase from black peppermint (Menthaxpiperita) and direct evidence for a chemotype unable to synthesise farnesene. Phytochemistry. 2006, 67 (15): 1564-1571. 10.1016/j.phytochem.2005.06.012.
Article
CAS
PubMed
Google Scholar
Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunairetnam S, Gleave AP, Laing WA: Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods. 2005, 1: 13-10.1186/1746-4811-1-13.
Article
PubMed Central
PubMed
Google Scholar
Song AA, Abdullah JO, Abdullah MP, Shafee N, Othman R, Tan EF, Noor NM, Raha AR: Overexpressing 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) in the lactococcal mevalonate pathway for heterologous plant sesquiterpene production. PLoS One. 2012, 7 (12): e52444-10.1371/journal.pone.0052444.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tahira R, Naeemullah M, Akbar F, Masood MS: Major phenolic acids of local and exotic mint germplasm grown in Islamabad. Pak J Bot. 2011, 43 (Special): 151-154.
Google Scholar
Lionetti V, Raiola A, Camardella L, Giovane A, Obel N, Pauly M, Favaron F, Cervone F, Bellincampi D: Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol. 2007, 143 (4): 1871-1880. 10.1104/pp.106.090803.
Article
PubMed Central
CAS
PubMed
Google Scholar
An SH, Sohn KH, Choi HW, Hwang IS, Lee SC, Hwang BK: Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta. 2008, 228 (1): 61-78. 10.1007/s00425-008-0719-z.
Article
PubMed Central
CAS
PubMed
Google Scholar
Blee E: Impact of phyto-oxylipins in plant defense. Trends Plant Sci. 2002, 7 (7): 315-322. 10.1016/S1360-1385(02)02290-2.
Article
CAS
PubMed
Google Scholar
Feussner I, Wasternack C: The lipoxygenase pathway. Annu Rev Plant Biol. 2002, 53: 275-297. 10.1146/annurev.arplant.53.100301.135248.
Article
CAS
PubMed
Google Scholar
Prost I, Dhondt S, Rothe G, Vicente J, Rodriguez MJ, Kift N, Carbonne F, Griffiths G, Esquerre-Tugaye MT, Rosahl S, Castresana C, Hamberg M, Fournier J: Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol. 2005, 139 (4): 1902-1913. 10.1104/pp.105.066274.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang WY, Zheng Y, Bahn SC, Pan XQ, Li MY, Vu HS, Roth MR, Scheu B, Welti R, Hong YY, Wang XM: The patatin-containing phospholipase A pPLAIIalpha modulates oxylipin formation and water loss in Arabidopsis thaliana. Mol Plant. 2012, 5 (2): 452-460. 10.1093/mp/ssr118.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tijet N, Brash AR: Allene oxide synthases and allene oxides. Prostaglandins Other Lipid Mediat. 2002, 68-69: 423-431. 10.1016/S0090-6980(02)00046-1.
Article
CAS
PubMed
Google Scholar
Stenzel I, Otto M, Delker C, Kirmse N, Schmidt D, Miersch O, Hause B, Wasternack C: Allene Oxide Cyclase (AOC) gene family members of Arabidopsis thaliana: tissue- and organ-specific promoter activities and in vivo heteromerization. J Exp Bot. 2012, 63 (17): 6125-6138. 10.1093/jxb/ers261.
Article
PubMed Central
CAS
PubMed
Google Scholar
FastQC. [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/]
Zhang X, Garreton V, Chua NH: The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev. 2005, 19 (13): 1532-1543. 10.1101/gad.1318705.
Article
PubMed Central
CAS
PubMed
Google Scholar
Walker NJ: Tech.Sight. A technique whose time has come. Science. 2002, 296 (5567): 557-559. 10.1126/science.296.5567.557.
Article
CAS
PubMed
Google Scholar
Nicot N, Hausman JF, Hoffmann L, Evers D: Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot. 2005, 56 (421): 2907-2914. 10.1093/jxb/eri285.
Article
CAS
PubMed
Google Scholar
Chen F, Tholl D, Bohlmann J, Pichersky E: The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 2011, 66 (1): 212-229. 10.1111/j.1365-313X.2011.04520.x.
Article
CAS
PubMed
Google Scholar