Robinson-Beers K, Pruitt RE, Gasser CS: Ovule development in wild-type Arabidopsis and two female-sterile mutants. Plant Cell. 1992, 4: 1237-1249. 10.1105/tpc.4.10.1237.
PubMed
PubMed Central
Google Scholar
Schneitz K, Hulskamp M, Pruitt RE: Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Plant J. 1995, 7: 731-749. 10.1046/j.1365-313X.1995.07050731.x.
Google Scholar
Gasser CS, Robinson-Beers K: Pistil Development. Plant Cell. 1993, 5: 1231-1239. 10.1105/tpc.5.10.1231.
PubMed
PubMed Central
Google Scholar
Bowman JL, Baum SF, Eshed Y, Putterill J, Alvarez J: Molecular genetics of gynoecium development in Arabidopsis. Curr Top Dev Biol. 1999, 45: 155-205. 10.1016/S0070-2153(08)60316-6.
PubMed
Google Scholar
Smyth DR, Bowman JL, Meyerowitz EM: Early flower development in Arabidopsis. Plant Cell. 1990, 2: 755-767. 10.1105/tpc.2.8.755.
PubMed
PubMed Central
Google Scholar
Palanivelu R, Brass L, Edlund AF, Preuss D: Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell. 2003, 114: 47-59. 10.1016/S0092-8674(03)00479-3.
PubMed
Google Scholar
Baker SC, Robinson-Beers K, Villanueva JM, Gaiser JC, Gasser CS: Interactions among genes regulating ovule development in Arabidopsis thaliana. Genetics. 1997, 145: 1109-1124.
PubMed
PubMed Central
Google Scholar
Modrusan Z, Reiser L, Feldmann KA, Fischer RL, Haughn GW: Homeotic transformation of ovules into carpel-like structures in Arabidopsis. Plant Cell. 1994, 6: 333-349. 10.1105/tpc.6.3.333.
PubMed
PubMed Central
Google Scholar
Ray A, Robinson-Beers K, Ray S, Baker SC, Lang JD, Preuss D, Milligan SB, Gasser CS: The Arabidopsis floral homeotic gene BELL (BEL1) controls ovule development through negative regulation of AGAMOUS gene (AG). Proc Natl Acad Sci USA. 1994, 91: 5761-5765. 10.1073/pnas.91.13.5761.
PubMed
PubMed Central
Google Scholar
Reiser L, Modrusan Z, Margossian L, Samach A, Ohad N, Haughn GW, Fischer RL: The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell. 1995, 83: 735-742. 10.1016/0092-8674(95)90186-8.
PubMed
Google Scholar
Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF: SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature. 2000, 404: 766-770. 10.1038/35008089.
PubMed
Google Scholar
Pinyopich A, Ditta DS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF: Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature. 2003, 424: 85-88. 10.1038/nature01741.
PubMed
Google Scholar
Gross-Hardt R, Lenhard M, Laux T: WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes Dev. 2002, 16: 1129-1138. 10.1101/gad.225202.
PubMed
PubMed Central
Google Scholar
Sieber P, Gheyselinck J, Gross-Hardt R, Laux T, Grossniklaus U, Schneitz K: Pattern formation during early ovule development in Arabidopsis thaliana. Dev Biol. 2004, 273: 321-334. 10.1016/j.ydbio.2004.05.037.
PubMed
Google Scholar
Skinner DJ, Hill TA, Gasser CS: Regulation of ovule development. Plant Cell. 2004, 16: S32-45. 10.1105/tpc.015933.
PubMed
PubMed Central
Google Scholar
Gasser CS, Broadhvest J, Hauser BA: Genetic analysis of ovule development. Ann Rev Plant Physiol Plant Mol Biol. 1998, 49: 1-24. 10.1146/annurev.arplant.49.1.1.
Google Scholar
Doyle JA: Integrating molecular phylogenetic and paloebotanical evidence on origin of the flower. Int J Plant Sci. 2008, 169: 816-843. 10.1086/589887.
Google Scholar
Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF: B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature. 2000, 405: 200-203. 10.1038/35012103.
PubMed
Google Scholar
Ishida T, Aida M, Takada S, Tasaka M: Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana. Plant Cell Physiol. 2000, 41: 60-67.
PubMed
Google Scholar
Eshed Y, Baum SF, Perea JV, Bowman JL: Establishment of polarity in lateral organs of plants. Curr Biol. 2001, 11: 1251-1260. 10.1016/S0960-9822(01)00392-X.
PubMed
Google Scholar
Hu W, Wang Y, Bowers C, Ma H: Isolation, sequence analysis, and expression studies of florally expressed cDNAs in Arabidopsis. Plant Mol Biol. 2003, 53: 545-563. 10.1023/B:PLAN.0000019063.18097.62.
PubMed
Google Scholar
Scutt CP, Vinauger-Douard M, Fourquin C, Ailhas J, Kuno N, Uchida K, Gaude T, Furuya M, Dumas C: The identification of candidate genes for a reverse genetic analysis of development and function in the Arabidopsis gynoecium. Plant Physiol. 2003, 132: 653-665. 10.1104/pp.102.017798.
PubMed
PubMed Central
Google Scholar
Schaffer R, Landgraf J, Perez-Amador M, Wisman E: Monitoring genome-wide expression in plants. Curr Opin Biotechnol. 2000, 11: 162-167. 10.1016/S0958-1669(00)00084-7.
PubMed
Google Scholar
Meyers BC, Lee DK, Vu TH, Tej SS, Edberg SB, Matvienko M, Tindell LD: Arabidopsis MPSS. An online resource for quantitative expression analysis. Plant Physiol. 2004, 135: 801-813. 10.1104/pp.104.039495.
PubMed
PubMed Central
Google Scholar
Fizames C, Munos S, Cazettes C, Nacry P, Boucherez J, Gaymard F, Piquemal D, Delorme V, Commes T, Doumas P, et al: The Arabidopsis root transcriptome by serial analysis of gene expression. Gene identification using the genome sequence. Plant Physiol. 2004, 134: 67-80. 10.1104/pp.103.030536.
PubMed
PubMed Central
Google Scholar
Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI: Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell. 2004, 16: 596-615. 10.1105/tpc.019000.
PubMed
PubMed Central
Google Scholar
Honys D, Twell D: Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol. 2003, 132: 640-652. 10.1104/pp.103.020925.
PubMed
PubMed Central
Google Scholar
Honys D, Twell D: Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 2004, 5: R85-10.1186/gb-2004-5-11-r85.
PubMed
PubMed Central
Google Scholar
Zik M, Irish VF: Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action. Plant Cell. 2003, 15: 207-222. 10.1105/tpc.006353.
PubMed
PubMed Central
Google Scholar
Wellmer F, Riechmann JL, Alves-Ferreira M, Meyerowitz EM: Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell. 2004, 16: 1314-1326. 10.1105/tpc.021741.
PubMed
PubMed Central
Google Scholar
Tung CW, Dwyer KG, Nasrallah ME, Nasrallah JB: Genome-wide identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth. Plant Physiol. 2005, 138: 977-989. 10.1104/pp.105.060558.
PubMed
PubMed Central
Google Scholar
Köhler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U: The Polycomb -group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev. 2003, 17: 1540-1553. 10.1101/gad.257403.
PubMed
PubMed Central
Google Scholar
Yu HJ, Hogan P, Sundaresan V: Analysis of the female gametophyte transcriptome of Arabidopsis by comparative expression profiling. Plant Physiol. 2005, 139: 1853-1869. 10.1104/pp.105.067314.
PubMed
PubMed Central
Google Scholar
Johnston AJ, Meier P, Gheyselinck J, Wuest SE, Federer M, Schlagenhauf E, Becker JD, Grossniklaus U: Genetic subtraction profiling identifies genes essential for Arabidopsis reproduction and reveals interaction between the female gametophyte and the maternal sporophyte. Genome Biology. 2007, 8: R204-10.1186/gb-2007-8-10-r204.
PubMed
PubMed Central
Google Scholar
Villanueva JM, Broadhvest J, Hauser BA, Meister RJ, Schneitz K, Gasser CS: INNER NO OUTER regulates abaxial-adaxial patterning in Arabidopsis ovules. Genes Dev. 1999, 13: 3160-3169. 10.1101/gad.13.23.3160.
PubMed
PubMed Central
Google Scholar
Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQJ, Gerentes D, Perez P, Smyth DR: AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell. 1996, 8: 155-168. 10.1105/tpc.8.2.155.
PubMed
PubMed Central
Google Scholar
Klucher KM, Chow H, Reiser L, Fischer RL: The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell. 1996, 8: 137-153. 10.1105/tpc.8.2.137.
PubMed
PubMed Central
Google Scholar
Krizek BA: Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Dev Genet. 1999, 25: 224-236. 10.1002/(SICI)1520-6408(1999)25:3<224::AID-DVG5>3.0.CO;2-Y.
PubMed
Google Scholar
Mizukami Y, Fischer RL: Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA. 2000, 97: 942-947. 10.1073/pnas.97.2.942.
PubMed
PubMed Central
Google Scholar
Azhakanandam S, Nole-Wilson S, Bao F, Franks RG: SEUSS and AINTEGUMENTA mediate patterning and ovule initiation during gynoecium medial domain development. Plant Physiol. 2008, 146: 1165-1181. 10.1104/pp.107.114751.
PubMed
PubMed Central
Google Scholar
Nole-Wilson S, Krizek BA: AINTEGUMENTA contributes to organ polarity and regulates growth of lateral organs in combination with YABBY genes. Plant Physiology. 2006, 141: 977-987. 10.1104/pp.106.076604.
PubMed
PubMed Central
Google Scholar
Vishnyakova MA: Callose as an indicator of sterile ovules. Phytomorphology. 1991, 41: 245-252.
Google Scholar
Sun K, Hunt K, Hauser BA: Ovule abortion in Arabidopsis triggered by stress. Plant Physiol. 2004, 135: 2358-2367. 10.1104/pp.104.043091.
PubMed
PubMed Central
Google Scholar
Krizek BA, Prost V, Macias A: AINTEGUMENTA promotes petal identity and acts as a negative regulator of AGAMOUS. Plant Cell. 2000, 12: 1357-1366. 10.1105/tpc.12.8.1357.
PubMed
PubMed Central
Google Scholar
Liu Z, Franks RG, Klink VP: Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA. Plant Cell. 2000, 12: 1879-1892. 10.1105/tpc.12.10.1879.
PubMed
PubMed Central
Google Scholar
Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, et al: Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnology. 1996, 14: 1675-1680. 10.1038/nbt1296-1675.
PubMed
Google Scholar
Redman JC, Haas BJ, Tanimoto G, Town CD: Development and evaluation of an Arabidopsis whole genome Affymetrix probe array. Plant J. 2004, 38: 545-561. 10.1111/j.1365-313X.2004.02061.x.
PubMed
Google Scholar
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003, 4: 249-264. 10.1093/biostatistics/4.2.249.
PubMed
Google Scholar
Lonnstedt I, Speed T: Replicated microarray data. Stat Sinica. 2002, 12: 31-46.
Google Scholar
Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology. 2004, 3: Article 3-10.2202/1544-6115.1027.
Google Scholar
Wettenhall JM, Smyth GK: limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics. 2004, 20: 3705-3706. 10.1093/bioinformatics/bth449.
PubMed
Google Scholar
Smyth GK, Thorne NP, Wettenhall J: Limma: Linear Models for Microarray Data User's Guide. 2003, [http://bioinf.wehi.edu.au/limma/].
Google Scholar
Nemhauser JL, Mockler TC, Chory J: Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol. 2004, 2: E258-10.1371/journal.pbio.0020258.
PubMed
PubMed Central
Google Scholar
Taylor G, Street NR, Tricker PJ, Sjodin A, Graham L, Skogstrom O, Calfapietra C, Scarascia-Mugnozza G, Jansson S: The transcriptome of Populus in elevated CO2. New Phytol. 2005, 167: 143-154. 10.1111/j.1469-8137.2005.01450.x.
PubMed
Google Scholar
Giege P, Sweetlove LJ, Cognat V, Leaver CJ: Coordination of nuclear and mitochondrial genome expression during mitochondrial biogenesis in Arabidopsis. Plant Cell. 2005, 17: 1497-1512. 10.1105/tpc.104.030254.
PubMed
PubMed Central
Google Scholar
Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc Natl Acad Sci USA. 2003, 100: 9440-9445. 10.1073/pnas.1530509100.
PubMed
PubMed Central
Google Scholar
Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR: Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA. 1999, 96: 2907-2912. 10.1073/pnas.96.6.2907.
PubMed
PubMed Central
Google Scholar
Yang W-C, Ye D, Xu J, Sundaresan V: The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev. 1999, 13: 2108-2117. 10.1101/gad.13.16.2108.
PubMed
PubMed Central
Google Scholar
Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K: Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci USA. 1999, 96: 11664-11669. 10.1073/pnas.96.20.11664.
PubMed
PubMed Central
Google Scholar
Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T: Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development. 2004, 131: 657-668. 10.1242/dev.00963.
PubMed
Google Scholar
Caryl AP, Jones GH, Franklin FCH: Dissecting plant meiosis using Arabidopsis thaliana mutants. J Exp Bot. 2003, 54: 25-38. 10.1093/jxb/erg041.
PubMed
Google Scholar
Wilson ZA, Yang C: Plant gametogenesis: conservation and contrasts in development. Reproduction. 2004, 128: 483-492. 10.1530/rep.1.00306.
PubMed
Google Scholar
Chuang CF, Running MP, Williams RW, Meyerowitz EM: The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev. 1999, 13: 334-344. 10.1101/gad.13.3.334.
PubMed
PubMed Central
Google Scholar
Dinneny JR, Weigel D, Yanofsky MF: NUBBIN and JAGGED define stamen and carpel shape in Arabidopsis. Development. 2006, 133: 1645-1655. 10.1242/dev.02335.
PubMed
Google Scholar
Heisler MG, Atkinson A, Bylstra YH, Walsh R, Smyth DR: SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein. Development. 2001, 128: 1089-1098.
PubMed
Google Scholar
Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J: Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell. 2003, 115: 591-602. 10.1016/S0092-8674(03)00924-3.
PubMed
Google Scholar
Nole-Wilson S, Tranby TL, Krizek BA: AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol Biol. 2005, 57: 613-628. 10.1007/s11103-005-0955-6.
PubMed
Google Scholar
Shpak ED, Berthiaume CT, Hill EJ, Torii KU: Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation. Development. 2004, 131: 1491-1501. 10.1242/dev.01028.
PubMed
Google Scholar
Abe M, Katsumata H, Komeda Y, Takahashi T: Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development. 2003, 130: 635-643. 10.1242/dev.00292.
PubMed
Google Scholar
Lu P, Porat R, Nadeau JA, O'Neill SD: Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes. Plant Cell. 1996, 8: 2155-2168. 10.1105/tpc.8.12.2155.
PubMed
PubMed Central
Google Scholar
Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL: Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol. 2003, 13: 1768-1774. 10.1016/j.cub.2003.09.035.
PubMed
Google Scholar
Pruitt RE, Vielle-Calzada JP, Ploense SE, Grossniklaus U, Lolle SJ: FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proc Natl Acad Sci USA. 2000, 97: 1311-1316. 10.1073/pnas.97.3.1311.
PubMed
PubMed Central
Google Scholar
Park SO, Zheng Z, Oppenheimer DG, Hauser BA: The PRETTY FEW SEEDS2 gene encodes an Arabidopsis homeodomain protein that regulates ovule development. Development. 2005, 132: 841-849. 10.1242/dev.01654.
PubMed
Google Scholar
Hill TA, Day CD, Zondlo SC, Thackeray AG, Irish VF: Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development. 1998, 125: 1711-1721.
PubMed
Google Scholar
Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, Kater MM, Colombo L: Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell. 2007, 19: 2544-2556. 10.1105/tpc.107.051797.
PubMed
PubMed Central
Google Scholar
Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L: MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell. 2003, 15: 2603-2611. 10.1105/tpc.015123.
PubMed
PubMed Central
Google Scholar
Takeda S, Matsumoto N, Okada K: RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana. Development. 2004, 131: 425-434. 10.1242/dev.00938.
PubMed
Google Scholar
Krizek BA, Lewis MW, Fletcher JC: RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers. Plant J. 2006, 45: 369-383. 10.1111/j.1365-313X.2005.02633.x.
PubMed
Google Scholar
Meister RJ, Kotow LM, Gasser CS: SUPERMAN attenuates positive INNER NO OUTER autoregulation to maintain polar development of Arabidopsis ovule outer integuments. Development. 2002, 129: 4281-4289.
PubMed
Google Scholar
Gaiser JC, Robinson-Beers K, Gasser CS: The Arabidopsis SUPERMAN gene mediates asymmetric growth of the outer integument of ovules. Plant Cell. 1995, 7: 333-345. 10.1105/tpc.7.3.333.
PubMed
PubMed Central
Google Scholar
Sakai H, Krizek B, Jacobsen S, Meyerowitz E: Regulation of SUP expression identifies multiple regulators involved in Arabidopsis floral meristem development. Plant Cell. 2000, 12: 1607-1618. 10.1105/tpc.12.9.1607.
PubMed
PubMed Central
Google Scholar
Sakai H, Medrano LJ, Meyerowitz EM: Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature. 1995, 378: 199-203. 10.1038/378199a0.
PubMed
Google Scholar
Ito T, Sakai H, Meyerowitz EM: Whorl-specific expression of the SUPERMAN gene of Arabidopsis is mediated by cis elements in the transcribed region. Curr Biol. 2003, 13: 1524-1530. 10.1016/S0960-9822(03)00612-2.
PubMed
Google Scholar
Riechmann JL: Transcriptional Regulation: a Genomics Overview. The Arabidopsis Book (TAB). American Society of Plant Biologists.
Iida K, Seki M, Sakurai T, Satou M, Akiyama K, Toyoda T, Konagaya A, Shinozaki K: RARTF: Database and tools for complete sets of Arabidopsis transcription factors. DNA Research. 2005, 12: 247-256. 10.1093/dnares/dsi011.
PubMed
Google Scholar
Jiao YL, Yang HJ, Ma LG, Sun N, Yu HY, Liu T, Gao Y, Gu HY, Chen ZL, Wada M, et al: A genome-wide analysis of blue-light regulation of Arabidopsis transcription factor gene expression during seedling development. Plant Physiology. 2003, 133: 1480-1493. 10.1104/pp.103.029439.
PubMed
PubMed Central
Google Scholar
Franco-Zorrilla JM, Cubas P, Jarillo JA, Fernandez-Calvin B, Salinas J, Martinez-Zapater JM: AtREM1, a member of a new family of B3 domain-containing genes, is preferentially expressed in reproductive meristems. Plant Physiol. 2002, 128: 418-427. 10.1104/pp.010323.
PubMed
PubMed Central
Google Scholar
Matias-Hernandez L, Colombo L: REM18 and REM53: two direct targets of the ovule identity complex of Arabidopsis. 18th International Conference on Arabidopsis Research. 2007, [http://www.arabidopsis.org/servlets/TairObject?type=publication&id=501721657].
Google Scholar
Pinyopich A, Ditta DS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF: Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature. 2003, 424: 85-88. 10.1038/nature01741.
PubMed
Google Scholar
Sun K, Cui Y, Hauser BA: Environmental stress alters genes expression and induces ovule abortion: reactive oxygen species appear as ovules commit to abort. Planta. 2005, 222: 632-642. 10.1007/s00425-005-0010-5.
PubMed
Google Scholar
Henriksson E, Olsson AS, Johannesson H, Johansson H, Hanson J, Engstrom P, Soderman E: Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships. Plant Physiol. 2005, 139: 509-518. 10.1104/pp.105.063461.
PubMed
PubMed Central
Google Scholar
William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D: Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci USA. 2004, 101: 1775-1780. 10.1073/pnas.0307842100.
PubMed
PubMed Central
Google Scholar
Saddic LA, Huvermann BR, Bezhani S, Su YH, Winter CM, Kwon CS, Collum RP, Wagner D: The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development. 2006, 133: 1673-1682. 10.1242/dev.02331.
PubMed
Google Scholar
Wagner D, Wellmer F, Dilks K, William D, Smith MR, Kumar PP, Riechmann JL, Greenland AJ, Meyerowitz EM: Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation. Plant J. 2004, 39: 273-282. 10.1111/j.1365-313X.2004.02127.x.
PubMed
Google Scholar
Ponting CP, Blake DJ, Davies KE, Kendrick-Jones J, Winder SJ: ZZ and TAZ: new putative zinc fingers in dystrophin and other proteins. Trends Biochem Sci. 1996, 21: 11-13.
PubMed
Google Scholar
Bardwell VJ, Treisman R: The POZ domain: a conserved protein-protein interaction motif. Genes Dev. 1994, 8: 1664-1677. 10.1101/gad.8.14.1664.
PubMed
Google Scholar
Zollman S, Godt D, Prive GG, Couderc JL, Laski FA: The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc Natl Acad Sci USA. 1994, 91: 10717-10721. 10.1073/pnas.91.22.10717.
PubMed
PubMed Central
Google Scholar
Du L, Poovaiah BW: A novel family of Ca2+/calmodulin-binding proteins involved in transcriptional regulation: interaction with fsh/Ring3 class transcription activators. Plant Mol Biol. 2004, 54: 549-569. 10.1023/B:PLAN.0000038269.98972.bb.
PubMed
Google Scholar
Ren SX, Mandadi KK, Boedeker AL, Rathore KS, McKnight TD: Regulation of telomerase in Arabidopsis by BT2, an apparent target of TELOMERASE ACTIVATOR1. Plant Cell. 2007, 19: 23-31. 10.1105/tpc.106.044321.
PubMed
PubMed Central
Google Scholar
Chary SN, Hicks GR, Choi YG, Carter D, Raikhel NV: Trehalose-6-Phosphate Synthase/Phosphatase Regulates Cell Shape and Plant Architecture in Arabidopsis. Plant Physiol. 2008, 146: 97-107. 10.1104/pp.107.107441.
PubMed
PubMed Central
Google Scholar
Chuaqui RF, Bonner RF, Best CJM, Gillespie JW, Flaig MJ, Hewitt SM, Phillips JL, Krizman DB, Tangrea MA, Ahram M, et al: Post-analysis follow-up and validation of microarray experiments. Nature Genetics. 2002, 32: 509-514. 10.1038/ng1034.
PubMed
Google Scholar
Matsushita A, Furumoto T, Ishida S, Takahashi Y: AGF1, an AT-hook protein, is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase. Plant Physiology. 2007, 143: 1152-1162. 10.1104/pp.106.093542.
PubMed
PubMed Central
Google Scholar
Leon-Kloosterziel KM, Keijzer CJ, Koornneef M: A seed shape mutant of Arabidopsis that is affected in integument development. Plant Cell. 1994, 6: 385-392. 10.1105/tpc.6.3.385.
PubMed
PubMed Central
Google Scholar
McAbee JM, Hill TA, Skinner DJ, Itzaki A, Hauser BA, Meister RJ, Reddy VG, Meyerowitz EM, Bowman JL, Gasser CS: ABERRANT TESTA SHAPE encodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments. Plant J. 2006, 46: 522-531. 10.1111/j.1365-313X.2006.02717.x.
PubMed
Google Scholar
Villalba M, Batanero E, Lopez-Otin C, Sanchez LM, Monsalve RI, Gonzalez de la Pena MA, Lahoz C, Rodriguez R: The amino acid sequence of Ole e I, the major allergen from olive tree (Olea europaea) pollen. Eur J Biochem. 1993, 216: 863-869. 10.1111/j.1432-1033.1993.tb18208.x.
PubMed
Google Scholar
Emanuelsson O, Nielsen H, Brunak S, von Heijne G: Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000, 300: 1005-1016. 10.1006/jmbi.2000.3903.
PubMed
Google Scholar
Kay R, Chan A, Daly M, McPherson J: Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science. 1987, 236: 1299-1302. 10.1126/science.236.4806.1299.
PubMed
Google Scholar
Parinov S, Sevugan M, Ye D, Yang W-C, Kumaran M, Sundaresan V: Analysis of flanking sequences from Dissociation insertion lines: A database for reverse genetics in Arabidopsis. Plant Cell. 1999, 11: 2263-2270. 10.1105/tpc.11.12.2263.
PubMed
PubMed Central
Google Scholar
Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y: Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in fiverse species. Plant Cell. 2006, 18: 1134-1151. 10.1105/tpc.105.040725.
PubMed
PubMed Central
Google Scholar
Western TL, Skinner DJ, Haughn GW: Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiol. 2000, 122: 345-356. 10.1104/pp.122.2.345.
PubMed
PubMed Central
Google Scholar
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W: GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 2004, 136: 2621-2632. 10.1104/pp.104.046367.
PubMed
PubMed Central
Google Scholar
Aravind L, Landsman D: AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res. 1998, 26: 4413-4421. 10.1093/nar/26.19.4413.
PubMed
PubMed Central
Google Scholar
Morisawa G, Han-Yama A, Moda I, Tamai A, Iwabuchi M, Meshi T: AHM1, a novel type of nuclear matrix-localized, MAR binding protein with a single AT hook and a J domain-homologous region. Plant Cell. 2000, 12: 1903-1916. 10.1105/tpc.12.10.1903.
PubMed
PubMed Central
Google Scholar
Fujimoto S, Matsunaga S, Yonemura M, Uchiyama S, Azuma T, Fukui K: Identification of a novel plant MAR DNA binding protein localized on chromosomal surfaces. Plant Mol Biol. 2004, 56: 225-239. 10.1007/s11103-004-3249-5.
PubMed
Google Scholar
Meijer AH, van Dijk EL, Hoge JH: Novel members of a family of AT hook-containing DNA-binding proteins from rice are identified through their in vitro interaction with consensus target sites of plant and animal homeodomain proteins. Plant Mol Biol. 1996, 31: 607-618. 10.1007/BF00042233.
PubMed
Google Scholar
Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ, Gong F, Phillips AL, Hedden P, Sun TP, et al: Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell. 2006, 18: 3399-3414. 10.1105/tpc.106.047415.
PubMed
PubMed Central
Google Scholar
Nakajima M, Shimada A, Takashi Y, Kim YC, Park SH, Ueguchi-Tanaka M, Suzuki H, Katoh E, Iuchi S, Kobayashi M, et al: Identification and characterization of Arabidopsis gibberellin receptors. Plant Journal. 2006, 46: 880-889. 10.1111/j.1365-313X.2006.02748.x.
PubMed
Google Scholar
Kepinski S, Leyser O: The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature. 2005, 435: 446-451. 10.1038/nature03542.
PubMed
Google Scholar
Dharmasiri N, Dharmasiri S, Estelle M: The F-box protein TIR1 is an auxin receptor. Nature. 2005, 435: 441-445. 10.1038/nature03543.
PubMed
Google Scholar
Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jurgens G, Estelle M: Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell. 2005, 9: 109-119. 10.1016/j.devcel.2005.05.014.
PubMed
Google Scholar
Guilfoyle TJ, Ulmasov T, Hagen G: The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cell Mol Life Sci. 1998, 54: 619-627. 10.1007/s000180050190.
PubMed
Google Scholar
Ulmasov T, Hagen G, Guilfoyle TJ: Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci USA. 1999, 96: 5844-5849. 10.1073/pnas.96.10.5844.
PubMed
PubMed Central
Google Scholar
Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, et al: Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell. 2005, 17: 444-463. 10.1105/tpc.104.028316.
PubMed
PubMed Central
Google Scholar
Remington DL, Vision TJ, Guilfoyle TJ, Reed JW: Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol. 2004, 135: 1738-1752. 10.1104/pp.104.039669.
PubMed
PubMed Central
Google Scholar
Kranz AR, Kirchheim B: Handling of Arabidopsis. Arabidopsis Information Service, v 24: Genetic Resources in Arabidopsis. Edited by: Kranz AR. Frankfurt, Germany: Arabidopsis Information Service; 1987:4.1.1-4.2.7.
Google Scholar
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004, 5: R80-10.1186/gb-2004-5-10-r80.
PubMed
PubMed Central
Google Scholar
Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003, 19: 185-193. 10.1093/bioinformatics/19.2.185.
PubMed
Google Scholar
Czechowski T, Bari RP, Stitt M, Scheible WR, Udvardi MK: Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J. 2004, 38: 366-379. 10.1111/j.1365-313X.2004.02051.x.
PubMed
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
PubMed
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3: 0031-0034. 10.1186/gb-2002-3-7-research0034.
Google Scholar
Ramakers C, Ruijter JM, Deprez RH, Moorman AF: Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003, 339: 62-66. 10.1016/S0304-3940(02)01423-4.
PubMed
Google Scholar
Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M, et al: Empirical analysis of transcriptional activity in the Arabidopsis genome. Science. 2003, 302: 842-846. 10.1126/science.1088305.
PubMed
Google Scholar
Schumacher K, Vafeados D, McCarthy M, Sze H, Wilkins T, Chory J: The Arabidopsis det3 mutant reveals a central role for the vacuolar H(+)-ATPase in plant growth and development. Genes Dev. 1999, 13: 3259-3270. 10.1101/gad.13.24.3259.
PubMed
PubMed Central
Google Scholar
Skinner DJ, Baker SC, Meister RJ, Broadhvest J, Schneitz K, Gasser CS: The Arabidopsis HUELLENLOS gene, which is essential for normal ovule development, encodes a mitochondrial ribosomal protein. Plant Cell. 2001, 13: 2719-2730. 10.1105/tpc.13.12.2719.
PubMed
PubMed Central
Google Scholar
McAbee JM, Kuzoff RK, Gasser CS: Mechanisms of Derived Unitegmy among Impatiens Species. Plant Cell. 2005, 17: 1674-1684. 10.1105/tpc.104.029207.
PubMed
PubMed Central
Google Scholar
Ferrándiz C, Gu Q, Martienssen R, Yanofsky MF: Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development. 2000, 127: 725-734.
PubMed
Google Scholar
Hauser BA, Villanueva JM, Gasser CS: Arabidopsis TSO1 regulates directional processes in cells during floral organogenesis. Genetics. 1998, 150: 411-423.
PubMed
PubMed Central
Google Scholar