Xia XC, Melchinger AE, Kuntze L, Lübberstedt T: Quantitative trait loci mapping of resistance to sugarcane mosaic virus in maize. Phytopathology. 1999, 89 (8): 660-667. 10.1094/PHYTO.1999.89.8.660.
Article
PubMed
Google Scholar
Fuchs E, Grüntzig M: Influence of sugarcane mosaic-virus (SCMV) and maize-dwarf mosaic-virus (MDMV) on the growth and yield of two maize varieties. J Plant Dis Prot. 1995, 102 (1): 44-50.
Google Scholar
Louie R, Findley WR, Knoke JK, McMullen MD: Genetic-basis of resistance in maize to five maize-dwarf mosaic-virus strains. Crop Sci. 1991, 31 (1): 14-18.
Article
Google Scholar
Quint M, Mihaljevic R, Dussle CM, Xu ML, Melchinger AE, Lubberstedt T: Development of RGA-CAPS markers and genetic mapping of candidate genes for sugarcane mosaic virus resistance in maize. Theor Appl Genet. 2002, 105 (2–3): 355-636.
PubMed
Google Scholar
Comstock JC, Lentini RS: Sugarcane mosaic virus disease. Florida Sugarcane Handbook Florida: Agronomy Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida: Gilbert RA 2002.
Google Scholar
Carrington JC, Kasschau KD, Mahajan SK, Schaad MC: Cell-to-cell and long-distance transport of viruses in plants. Plant Cell. 1996, 8 (10): 1669-1681. 10.1105/tpc.8.10.1669.
Article
PubMed
PubMed Central
Google Scholar
Kuntze L, Fuchs E, Grüntzig M, Schulz B, Klein D, Melchinger AE: Resistance of early-maturing European maize germplasm to sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV). Plant Breed. 1997, 116 (5): 499-501. 10.1111/j.1439-0523.1997.tb01038.x.
Article
Google Scholar
Roane CW, Genter CF, Tolin SA: Inheritance of resistance to maize dwarf mosaic virus in maize [abstract]. Proc Am Phytopathol Soc. 1977, 4: 140-
Google Scholar
Mikel MA, Cleo'ra JDA, Rhodes AM: Genetics of resistance of two dent corn inbreds to maize dwarf mosiac virus and transfer of resistance into sweet corn. Phytopathology. 1984, 74: 467-473. 10.1094/Phyto-74-467.
Article
Google Scholar
Findley WR, Louie R, Knoke JK: Breeding corn for resistance to corn viruses in Ohio. Proc Annu Corn Sorgh Res Conf. Edited by: Wilkinson DJ. Washington D. C.: American Seed Trade Association; 1984:52-67.
Google Scholar
Rosenkranz E, Scott GE: Determination of the number of genes for resistance to maize dwarf mosaic virus strain A in five corn inbred lines. Phytopathology. 1984, 74 (1): 71-76. 10.1094/Phyto-74-71.
Article
Google Scholar
Melchinger AE, Kuntze L, Gumber RK, Lübberstedt T, Fuchs E: Genetic basis of resistance to sugarcane mosaic virus in European maize germplasm. Theor Appl Genet. 1998, 96 (8): 1151-1161. 10.1007/s001220050851.
Article
Google Scholar
Xu ML, Melchinger AE, Xia XC, Lübberstedt T: High-resolution mapping of loci conferring resistance to sugarcane mosaic virus in maize using RFLP, SSR, and AFLP markers. Mol Gen Genet. 1999, 261 (3): 574-581. 10.1007/s004380051003.
Article
PubMed
Google Scholar
Yuan L, Dussle CM, Melchinger AE, Utz HF, Lübberstedt T: Clustering of QTL conferring SCMV resistance in maize. Maydica. 2003, 48 (1): 55-62.
Google Scholar
Dussle CM, Melchinger AE, Kuntze L, Stork A, Lübberstedt T: Molecular mapping and gene action of Scm1 and Scm2, two major QTL contributing to SCMV resistance in maize. Plant Breed. 2000, 119 (4): 299-303. 10.1046/j.1439-0523.2000.00509.x.
Article
Google Scholar
Lübberstedt T, Ingvardsen C, Melchinger AE, Xing Y, Salomon R, Redinbaugh MG: Two chromosome segments confer multiple potyvirus resistance in maize. Plant Breeding. 2006, 125 (4): 352-356. 10.1111/j.1439-0523.2006.01244.x.
Article
Google Scholar
Schnable PS, Hochholdinger F, Nakazano M: Global expression profiling applied to plant development. Curr Opin Plant Biol. 2004, 7: 50-56. 10.1016/j.pbi.2003.11.001.
Article
PubMed
Google Scholar
Shi C, Thummler F, Melchinger AE, Wenzel G, Lübberstedt T: Comparison of transcript profiles between near-isogenic maize lines in association with SCMV resistance based on unigene-microarrays. Plant Sci. 2006, 170 (1): 159-169. 10.1016/j.plantsci.2005.08.016.
Article
Google Scholar
Shi C, Ingvardsen C, Thummler F, Melchinger AE, Wenzel G, Lübberstedt T: Identification by suppression subtractive hybridization of genes that are differentially expressed between near-isogenic maize lines in association with sugarcane mosaic virus resistance. Mol Gen Genomics. 2005, 273 (6): 450-461. 10.1007/s00438-004-1103-8.
Article
Google Scholar
Xing Y, Ingvardsen C, Salomon R, Lübberstedt T: Analysis of sugarcane mosaic virus resistance in maize in an isogenic dihybrid crossing scheme and implications for breeding potyvirus-resistant maize hybrids. Genome. 2006, 49: 1274-1282. 10.1139/G06-070.
Article
PubMed
Google Scholar
Whitham SA, Quan S, Hur-Song C, Cooper B, Estes B, Tong Z, Wang X, Yu-Ming H: Diverse RNA viruses elicit the expression of common sets of genes in susceptable Arabidopsis thaliana plants. Plant J. 2003, 33: 271-283. 10.1046/j.1365-313X.2003.01625.x.
Article
PubMed
Google Scholar
Dardick CD: Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses. Mol Plant-Microbe Interact. 2007, 20 (8): 1004-1017. 10.1094/MPMI-20-8-1004.
Article
PubMed
Google Scholar
Czechowski T, Bari RP, Stitt M, Scheible WR, Udvardi MK: Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J. 2004, 38 (2): 366-379. 10.1111/j.1365-313X.2004.02051.x.
Article
PubMed
Google Scholar
Dallas PB, Gottardo NG, Firth MJ, Beesley AH, Hoffmann K, Terry PA, Freitas JR, Boag JM, Cummings AJ, Kees UR: Gene expression levels assessed by oligonucleotide microarray analysis and quantitative real-time RT-PCR – how well do they correlate?. BMC Genomics. 2005, 6: 59-10.1186/1471-2164-6-59.
Article
PubMed
PubMed Central
Google Scholar
Rubinstein B, Luster DG: Plasma-membrane redox activity – components and role in plant processes. Annu Rev Plant Physiol Plant Mol Biol. 1993, 44: 131-155. 10.1146/annurev.pp.44.060193.001023.
Article
Google Scholar
Bowles D: Defense-related proteins in higher plants. Annu Rev Biochem. 1990, 59: 873-907. 10.1146/annurev.bi.59.070190.004301.
Article
PubMed
Google Scholar
Hückelhoven R, Fordor J, Preis C, Kogel K-H: Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiol. 1999, 119: 1251-1260. 10.1104/pp.119.4.1251.
Article
PubMed
PubMed Central
Google Scholar
Dat J, Vandenabeele S, Vranova' E, Van Montagu M, Inze' D, Van Breusegem F: Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci. 2000, 57: 779-795. 10.1007/s000180050041.
Article
PubMed
Google Scholar
Trujillo M, Troeger M, Niks RE, Kogel K-H, Hückelhoven R: Mechanistic and genetic overlap of barley host and non-host resistance to Blumeria graminis. Mol Plant Pathol. 2004, 5 (5): 389-396. 10.1111/j.1364-3703.2004.00238.x.
Article
PubMed
Google Scholar
Apostol I, Heinstein PE, Low PS: Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiol. 1989, 90: 109-116. 10.1104/pp.90.1.109.
Article
PubMed
PubMed Central
Google Scholar
Noctor G, Foyer CH: Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol. 1998, 49: 249-279. 10.1146/annurev.arplant.49.1.249.
Article
PubMed
Google Scholar
Benhamou N, Nicole M: Cell biology of plant immunization against microbial infection: the potential of induced resistance in controlling plant diseases. Plant Physiol Biochem. 1999, 37 (10): 703-719. 10.1016/S0981-9428(00)86684-X.
Article
Google Scholar
Maule A, Leh V, Lederer C: The dialogue between viruses and hosts in compatible interactions. Curr Opin Plant Biol. 2002, 5: 279-284. 10.1016/S1369-5266(02)00272-8.
Article
PubMed
Google Scholar
Love AJ, Yun B-W, Laval V, Loake GJ, Milner JL: Cauliflower mosaic virus, a compatible pathogen of Arabidopsis, engages three distinct defense-signalling pathways and activates rapid systemic generation of reactive oxygen species. Plant Physiol. 2005, 139: 935-948. 10.1104/pp.105.066803.
Article
PubMed
PubMed Central
Google Scholar
Marathe M, Guan Z, Anandalakshmi R, Zhao H, Dinesh-Kumar SP: Study of Arabidopsis thaliana resistome in response to cucumber mosaic virus infection using whole genome microarray. Plant Mol Biol. 2004, 55: 501-520. 10.1007/s11103-004-0439-0.
Article
PubMed
Google Scholar
Miyoshi H, Okade H, Suehiro N, Nakashima H, Tomoo K, Natsuaki T: Turnip mosaic virus VPg interacts with Arabidopsis thaliana eIF(iso)4E and inhibits in vitro translation. Biochimie. 2008, 90 (10): 1427-1434. 10.1016/j.biochi.2008.03.013.
Article
PubMed
Google Scholar
Lózsa R, Csorba T, Lakatos L, Burgyán J: Inhibition of 3' modification of small RNAs in virus-infected plants require spatial and temporal co-expression of small RNAs and viral silencing-suppressor proteins. Nucleic Acids Res. 2008, 36 (12): 4099-4107. 10.1093/nar/gkn365.
Article
PubMed
PubMed Central
Google Scholar
Yang C, Guo R, Jie F, Nettleton D, Peng J, Carr T, Yeakley JM, Fan J-B, Whitham SA: Spatial analysis of Arabidopsis thaliana gene expression in response to turnip mosaic virus infection. Mol Plant-Microbe Interact. 2007, 20 (4): 358-370. 10.1094/MPMI-20-4-0358.
Article
PubMed
Google Scholar
Whitham SA, Yang C, Goodin MM: Global impact: elucidating plant responses to viral infection. Mol Plant-Microbe Interact. 2006, 19 (11): 1207-1215. 10.1094/MPMI-19-1207.
Article
PubMed
Google Scholar
Hamer DH: Metallothionein. Annu Rev Biochem. 1986, 55: 913-951.
Article
PubMed
Google Scholar
Furst P, Hu S, Hackett R, Hamer D: Copper activates metallothionein gene-transcription by altering the conformation of a specific DNA-binding protein. Cell. 1988, 55 (4): 705-717. 10.1016/0092-8674(88)90229-2.
Article
PubMed
Google Scholar
Choi D, Kim HM, Yun HK, Park JA, Kim WT, Bok SH: Molecular cloning of a metallothionein-like gene from Nicotiana glutinosa L and its induction by wounding and tobacco mosaic virus infection. Plant Physiol. 1996, 112 (1): 353-359. 10.1104/pp.112.1.353.
Article
PubMed
PubMed Central
Google Scholar
Buchanan-Wollaston V: Isolation of a cDNA clones for genes that are expressed during leaf senescence in Brassica napus. Identification of a gene encoding a senescence-specific metallothionein-like protein. Plant Physiol. 1994, 105: 839-846. 10.1104/pp.105.3.839.
Article
PubMed
PubMed Central
Google Scholar
Coupe SA, Taylor JE, Roberts JA: Characterization of a messenger-RNA encoding a metallothionein-like protein that accumulates during ethylene-promoted abscission of Sambucus-nigra L leaflets. Planta. 1995, 197 (3): 442-447. 10.1007/BF00196665.
Article
PubMed
Google Scholar
Yang SF, Hoffman NE: Ethylene biosynthesis and its regulation in higher-plants. Annu Rev Plant Physiol Plant Mol Biol. 1984, 35: 155-189. 10.1146/annurev.arplant.35.1.155.
Article
Google Scholar
Kende H: Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol. 1993, 44: 283-307. 10.1146/annurev.pp.44.060193.001435.
Article
Google Scholar
Ravanel S, Gakiere B, Job D, Douce R: The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA. 1998, 95 (13): 7805-7812. 10.1073/pnas.95.13.7805.
Article
PubMed
PubMed Central
Google Scholar
Johnson PR, Ecker JR: The ethylene gas signalling pathway: a molecular perspective. Annu Rev Genet. 1998, 32: 227-254. 10.1146/annurev.genet.32.1.227.
Article
PubMed
Google Scholar
Huang Z, Yeakley JM, Garcia EW, Holdridge JD, Fan J-B, Whitham SA: Salicylic acid-dependent expression of host genes in compatible Arabidopsis -virus interactions. Plant Physiol. 2005, 137: 1147-1159. 10.1104/pp.104.056028.
Article
PubMed
PubMed Central
Google Scholar
Wang KLC, Li H, Ecker JR: Ethylene biosynthesis and signaling networks. Plant Cell. 2002, 14: S131-S151.
PubMed
PubMed Central
Google Scholar
Hurkman W, Tanaka CK: Germin gene expression is induced in wheat leaves by powdery mildew infection. Plant Physiol. 1996, 111: 735-739.
PubMed
PubMed Central
Google Scholar
Park C-J, Kim K-J, Shin R, Park J-M, Shin Y-C, Paek K-H: Pathogenesis related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathways. Plant J. 2004, 37: 186-198.
Article
PubMed
Google Scholar
Park C-J, An J-M, Shin J-C, Kim K-J, Lee B-J, Paek K-H: Molecular characterization of pepper germin-like protein as the novel PR-16 family of pathogenesis-related proteins isolated during the resistance response to viral and bacterial infection. Planta. 2004, 219: 797-806.
PubMed
Google Scholar
Zhou F, Zhang Z, Gregersen PL, Mikkelsen JD, de Neergaard E, Collinge DB, Thordahl-Christensen H: Molecular characterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus. Plant Physiol. 1998, 117: 33-41. 10.1104/pp.117.1.33.
Article
PubMed
PubMed Central
Google Scholar
Peng M, Kuc J: Peroxidase-generated hydrogen peroxid as a source of antifungal activity in vitro and on tobacco leas discs. Phytopathology. 1992, 82: 696-699. 10.1094/Phyto-82-696.
Article
Google Scholar
Lane BG, Dunwell JM, Ray JA, Schmitt MR, Cuming AC: Germin, a marker protein of early plant growth, is an oxalate oxidase. J Biol Chem. 1993, 268: 12239-12242.
PubMed
Google Scholar
Lane BG: Oxalate, germin and the extracellular matrix. FASEB J. 1994, 8: 294-301.
PubMed
Google Scholar
Dumas B, Freyssinet G, Pallett KE: Tissue specific expression of germin-like oxalate oxidase during development and fungal infection of barley seedlings. Plant Physiol. 1995, 107: 1091-1096.
PubMed
PubMed Central
Google Scholar
Zhang Z, Collinge DB, Thordal-Christensen H: Germin-like oxalate oxidase, a H2O2-producing enzyme, accumulates in barley attacked by the powdery mildew fungus. Plant J. 1995, 8: 139-145. 10.1046/j.1365-313X.1995.08010139.x.
Article
Google Scholar
Díaz-Vivancos P, Clemente-Moreno MJ, Rubio M, Olmos E, García JA, Martínez-Gómez P, Hernández JA: Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. J Exp Bot. 2008, 59 (8): 2147-2160. 10.1093/jxb/ern082.
Article
PubMed
PubMed Central
Google Scholar
Jiménez I, López L, Alamillo JM, Valli A, García JA: Identification of a plum pox virus CI-interacting protein from chloroplast that has a negative effect in virus infection. Mol Plant-Microbe Interact. 2006, 19 (3): 350-358. 10.1094/MPMI-19-0350.
Article
PubMed
Google Scholar
Emanuelsson O, Nielsen H, Heijne G: ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 1999, 8 (5): 978-984. 10.1110/ps.8.5.978.
Article
PubMed
PubMed Central
Google Scholar
Xiang Y, Kakani K, Reade R, Hui E, Rochon D: A 38-amino-acid sequence encompassing the arm domain of the cucumber necrosis virus coat protein functions as a chloroplast transit peptide in infected plants. J Virol. 2006, 80 (16): 7952-7964. 10.1128/JVI.00153-06.
Article
PubMed
PubMed Central
Google Scholar
Taylor S, Massiah A, Lomonossoff G, Roberts LM, Lord JM, Hartley M: Correlation between the activities of five ribosome-inactivating proteins in depurination of tobacco ribosomes and inhibition of tobacco mosaic-virus infection. Plant J. 1994, 5 (6): 827-835. 10.1046/j.1365-313X.1994.5060827.x.
Article
PubMed
Google Scholar
Romeis T, Piedras P, Jones JDG: Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response. Plant Cell. 2000, 12 (5): 803-815. 10.1105/tpc.12.5.803.
Article
PubMed
PubMed Central
Google Scholar
Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JDG, Romeis T: Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci USA. 2005, 102 (30): 10736-10741. 10.1073/pnas.0502954102.
Article
PubMed
PubMed Central
Google Scholar
Laloi C, Apel K, Danon A: Reactive oxygen signalling: the latest news. Curr Opin Plant Biol. 2004, 7 (3): 323-328. 10.1016/j.pbi.2004.03.005.
Article
PubMed
Google Scholar
Robson CA, Vanlerberghe GC: Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria-dependent and -independent pathways of programmed cell death. Plant Physiol. 2002, 129 (4): 1908-1920. 10.1104/pp.004853.
Article
PubMed
PubMed Central
Google Scholar
Hansen G: Evidence for Agrobacterium-induced apoptosis in maize cells. Mol Plant-Microbe Interact. 2000, 13 (6): 649-657. 10.1094/MPMI.2000.13.6.649.
Article
PubMed
Google Scholar
Mukhopadhyay A, Vij S, Tyagi AK: Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA. 2004, 101 (16): 6309-6314. 10.1073/pnas.0401572101.
Article
PubMed
PubMed Central
Google Scholar
Dietrich RA, Richberg MH, Schmidt R, Dean C, Dangl JL: A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell. 1997, 88 (5): 685-694. 10.1016/S0092-8674(00)81911-X.
Article
PubMed
Google Scholar
Lagrimini LM, Rothstein S: Tissue-specificity of tobacco peroxidase isozymes and their induction by wounding and tobacco mosaic-virus infection. Plant Physiol. 1987, 84 (2): 438-442. 10.1104/pp.84.2.438.
Article
PubMed
PubMed Central
Google Scholar
Roberts E, Kutchan T, Kolattukudy PE: Cloning and sequencing of cDNA for a highly anionic peroxidase from potato and the induction of its messenger-RNA in suberizing potato-tubers and tomato fruits. Plant Mol Biol. 1988, 11 (1): 15-26. 10.1007/BF00016010.
Article
PubMed
Google Scholar
Ito H, Kimizuka F, Ohbayashi A, Matsui H, Honma M, Shinmyo A, Ohashi Y, Caplan AB, Rodriguez RL: Molecular-cloning and characterization of two complementary DNAs encoding putative peroxidases from rice (Oryza Sativa L.) shoots. Plant Cell Rep. 1994, 13 (7): 361-366. 10.1007/BF00234138.
Article
PubMed
Google Scholar
Chittoor JM, Leach JE, White FF: Differential induction of a peroxidase gene family during infection of rice by Xanthomonas oryzae pv. oryzae. Mol Plant-Microbe Interact. 1997, 10 (7): 861-871. 10.1094/MPMI.1997.10.7.861.
Article
PubMed
Google Scholar
Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H: A large family of class III plant peroxidases. Plant Cell Physiol. 2001, 42 (5): 462-468. 10.1093/pcp/pce061.
Article
PubMed
Google Scholar
Hiraga S, Ito H, Sasaki K, Yamakawa H, Mitsuhara I, Toshima H, Matsui H, Honma M, Ohashi Y: Wound-induced expression of a tobacco peroxidase is not enhanced by ethephon and suppressed by methyl jasmonate and coronatine. Plant Cell Physiol. 2000, 41 (2): 165-170.
Article
PubMed
Google Scholar
Robaglia C, Caranta C: Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci. 2006, 11: 40-45. 10.1016/j.tplants.2005.11.004.
Article
PubMed
Google Scholar
Collins NC, Webb CA, Seah S, Ellis JG, Hulbert SH, Pryor A: The isolation and mapping of disease resistance gene analogs in maize. Mol Plant-Microbe Interact. 1998, 11 (10): 968-978. 10.1094/MPMI.1998.11.10.968.
Article
PubMed
Google Scholar
Dilger M, Felsenstein FG, Schwarz G: Identification and quantitative expression analysis of genes that are differentially expressed during conidial germination in Pyrenophora teres. Mol Gen Genomics. 2003, 270: 147-155. 10.1007/s00438-003-0910-7.
Article
Google Scholar