Krapovickas A, Gregory WC: Taxonomía del género Arachis (Leguminosae). Bonplandia. 1994, 8: 1-186.
Google Scholar
Holbrook CC, Stalker HT: Peanut breeding and genetic resources. Plant Breeding Reviews. 2003, 22: 297-355.
Google Scholar
Kochert G, Stalker HT, Gimenes MA, Galgaro ML, Lopes CR, Moore K: RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot. 1996, 83 (10): 1282-1291. 10.2307/2446112.
Article
CAS
Google Scholar
Milla SR, Isleib TG, Stalker HT: Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome. 2005, 48 (1): 1-11. 10.1139/g04-089.
Article
PubMed
CAS
Google Scholar
Favero AP, Simpson CE, Valls JF, Vello NA: Study of the evolution of cultivated peanut through crossability studies among Arachis ipaensis, A. duranensis, and A. hypogaea. Crop Sci. 2006, 46 (4): 1546-1552. 10.2135/cropsci2005.09-0331.
Article
Google Scholar
Seijo G, Lavia GI, Fernandez A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA: Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Am J Bot. 2007, 94 (12): 1963-1971. 10.3732/ajb.94.12.1963.
Article
PubMed
Google Scholar
Ramsey J, Schemske DW: Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics. 1998, 29 (1): 467-501. 10.1146/annurev.ecolsys.29.1.467.
Article
Google Scholar
Soltis PS, Soltis DE: The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci USA. 2000, 97 (13): 7051-7057. 10.1073/pnas.97.13.7051.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kochert G, Halward T, Branch WD, Simpson CE: RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet. 1991, 81 (5): 565-570. 10.1007/BF00226719.
Article
PubMed
CAS
Google Scholar
Halward T, Stalker T, LaRue E, Kochert G: Use of single-primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plant Mol Biol. 1992, 18 (2): 315-325. 10.1007/BF00034958.
Article
PubMed
CAS
Google Scholar
He G, Prakash CS: Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica. 1997, 97: 143-149. 10.1023/A:1002949813052.
Article
CAS
Google Scholar
Hopkins MS, Casa AM, Wang T, Mitchell SE, Dean RE, Kochert GD, Kresovich S: Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Science. 1999, 39: 1243-1247.
Article
CAS
Google Scholar
Varshney R, Bertioli D, Moretzsohn M, Vadez V, Krishnamurthy L, Aruna R, Nigam S, Moss B, Seetha K, Ravi K, et al: The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet. 2008, 118 (4): 729-739. 10.1007/s00122-008-0933-x.
Article
PubMed
Google Scholar
Halward T, Stalker HT, Kochert G: Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet. 1993, 87 (3): 379-384. 10.1007/BF01184927.
Article
PubMed
CAS
Google Scholar
Moretzsohn M, Leoi L, Proite K, Guimarães P, Leal-Bertioli S, Gimenes M, Martins W, Valls J, Grattapaglia D, Bertioli D: A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet. 2005, 111: 1060-1071. 10.1007/s00122-005-0028-x.
Article
PubMed
CAS
Google Scholar
Moretzsohn MC, Barbosa AV, Alves-Freitas DM, Teixeira C, Leal-Bertioli SC, Guimaraes PM, Pereira RW, Lopes CR, Cavallari MM, Valls JF, et al: A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol. 2009, 9: 40-10.1186/1471-2229-9-40.
Article
PubMed
PubMed Central
Google Scholar
Bertioli D, Moretzsohn M, Madsen L, Sandal N, Leal-Bertioli S, Guimaraes P, Hougaard B, Fredslund J, Schauser L, Nielsen A, et al: An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics. 2009, 10 (1): 45-45. 10.1186/1471-2164-10-45.
Article
PubMed
PubMed Central
Google Scholar
Burow MD, Simpson CE, Starr JL, Paterson AH: Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.). broadening the gene pool of a monophyletic polyploid species. Genetics. 2001, 159 (2): 823-837.
PubMed
CAS
PubMed Central
Google Scholar
Raina SN, Mukai Y: Genomic in situ hybridization in Arachis (Fabaceae) identifies the diploid wild progenitors of cultivated (A. hypogaea) and related wild (A. monticola) peanut species. Plant Systematics and Evolution. 1999, 214 (1): 251-262. 10.1007/BF00985743.
Article
Google Scholar
Gimenes MA, Lopes CR, Galgaro ML, Valls JF, Kochert G: RFLP analysis of genetic variation in species of section Arachis, genus Arachis (Leguminosae). Euphytica. 2002, 123: 421-429. 10.1023/A:1015033700110.
Article
CAS
Google Scholar
Moretzsohn M, Hopkins M, Mitchell S, Kresovich S, Valls J, Ferreira M: Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol. 2004, 4: 11-11. 10.1186/1471-2229-4-11.
Article
PubMed Central
Google Scholar
Eshed Y, Zamir D: An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics. 1995, 141 (3): 1147-1162.
PubMed
CAS
PubMed Central
Google Scholar
Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T: Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet. 1996, 92 (2): 213-224. 10.1007/BF00223378.
Article
PubMed
CAS
Google Scholar
Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD: QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet. 1997, 95 (5): 881-894. 10.1007/s001220050639.
Article
CAS
Google Scholar
Fridman E, Carrari F, Liu Y-S, Fernie AR, Zamir D: Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science. 2004, 305 (5691): 1786-1789. 10.1126/science.1101666.
Article
PubMed
CAS
Google Scholar
Lippman ZB, Semel Y, Zamir D: An integrated view of quantitative trait variation using tomato interspecific introgression lines. Current Opinion in Genetics & Development. 2007, 17 (6): 545-552. 10.1016/j.gde.2007.07.007.
Article
CAS
Google Scholar
Wan XY, Su JM, Wang CC, Shen CM, Li JM, Wang HL, Jiang L, Liu SJ, Chen LM, Yasui H, Yoshimura A: QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines. Theor Appl Genet. 2004, 110 (1): 71-79. 10.1007/s00122-004-1744-3.
Article
PubMed
CAS
Google Scholar
Wang YM, Dong ZY, Zhang ZJ, Lin XY, Shen Y, Zhou D, Liu B: Extensive de novo genomic variation in rice induced by introgression from wild rice (Zizania latifolia Griseb.). Genetics. 2005, 170 (4): 1945-1956. 10.1534/genetics.105.040964.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li JZ, Huang HQ, Heinrichs F, Ganal MW, Röder RS: Analysis of QTLs for yield, yield components, and malting quality in a BC 3-DH population of spring barley. Theor Appl Genet. 2005, 110 (2): 356-363. 10.1007/s00122-004-1847-x.
Article
PubMed
CAS
Google Scholar
Xu JL, Lafitte HR, Gao YM, Fu BY, Torres R, Li ZK: QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet. 2005, 111 (8): 1642-1650. 10.1007/s00122-005-0099-8.
Article
PubMed
CAS
Google Scholar
Zhang X, Zhou S, Fu Y, Su Z, Wang X, Sun C: Identification of a drought tolerant introgression line derived from dongxiang common wild rice (O. rufipogon Griff.). Plant Mol Biol. 2006, 62 (1): 247-259. 10.1007/s11103-006-9018-x.
Article
PubMed
CAS
Google Scholar
Zhao XQ, Xu JL, Zhao M, Lafitte R, Zhu LH, Fu BY, Gao YM, Li ZK: QTLs affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice (Oryza sativa L.). Plant Science. 2008, 174 (6): 618-625. 10.1016/j.plantsci.2008.03.009.
Article
CAS
Google Scholar
Liu S, Zhou R, Dong Y, Li P, Jia J: Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet. 2006, 112 (7): 1360-1373. 10.1007/s00122-006-0238-x.
Article
PubMed
CAS
Google Scholar
von Korff M, Wang H, Léon J, Pillen K: AB-QTL analysis in spring barley: III. Identification of exotic alleles for the improvement of malting quality in spring barley (H. vulgare ssp. spontaneum). Molecular Breeding . 2007, 21 (1): 81-93. 10.1007/s11032-007-9110-1.
Article
Google Scholar
Schmalenbach I, Léon J, Pillen K: Identification and verification of QTLs for agronomic traits using wild barley introgression lines. Theor Appl Genet. 2009, 118 (3): 483-497. 10.1007/s00122-008-0915-z.
Article
PubMed
CAS
Google Scholar
Risterucci AM, Grivet L, N'Goran JA, Pieretti I, Flament MH, Lanaud C: A high-density linkage map of Theobroma cacao L. Theor Appl Genet. 2000, 101 (5): 948-955. 10.1007/s001220051566.
Article
CAS
Google Scholar
Palmieri DA, Hoshino AA, Bravo JP, Lopes CR, Gimenes MA: Isolation and characterization of microsatellite loci from the forage species Arachis pintoi (Genus Arachis). Molecular Ecology Notes. 2002, 2: 551-553. 10.1046/j.1471-8286.2002.00317.x.
Article
CAS
Google Scholar
He G, Meng R, Newman M, Gao G, Pittman RN, Prakash C: Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol. 2003, 3: 3-3. 10.1186/1471-2229-3-3.
Article
PubMed
PubMed Central
Google Scholar
Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S: Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet. 2004, 108: 1064-1070. 10.1007/s00122-003-1535-2.
Article
PubMed
CAS
Google Scholar
Palmieri DA, Bechara MD, Curi RA, Gimenes MA, Lopes CR: Novel polymorphic microsatellite markers in section Caulorrhizae (Arachis, Fabaceae). Molecular Ecology Notes. 2005, 5: 77-79. 10.1111/j.1471-8286.2004.00838.x.
Article
CAS
Google Scholar
Bravo JP, Hoshino AA, Angelici CMLCD, Lopes CR, Gimenes MA: Transferability and use of microsatellite markers for the genetic analysis of the germplasm of some Arachis section species of the genus Arachis. Genetics and Molecular Biology. 2006, 29: 516-524. 10.1590/S1415-47572006000300021.
Article
CAS
Google Scholar
Hoshino AA, Bravo JP, Angelici CMLCD, Barbosa AaVG, Lopes CR, Gimenes MA: Heterologous microsatellite primer pairs informative for the whole genus Arachis. Genetics and Molecular Biology. 2006, 29: 665-675. 10.1590/S1415-47572006000400016.
Article
CAS
Google Scholar
Proite K, Leal-Bertioli SCM, Bertioli DJ, Moretzsohn MC, Silva FRd, Martins NF, Guimarães PM: ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol. 2007, 7: 7-7. 10.1186/1471-2229-7-7.
Article
PubMed
PubMed Central
Google Scholar
Gimenes M, Hoshino A, Barbosa A, Palmieri D, Lopes C: Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea). BMC Plant Biol. 2007, 7 (9).
Cuc L, Mace E, Crouch J, Quang V, Long T, Varshney R: Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea). BMC Plant Biol. 2008, 8 (1): 55-55. 10.1186/1471-2229-8-55.
Article
PubMed
PubMed Central
Google Scholar
Lorieux M: MapDisto, A Free User-Friendly Program For Computing Genetic Maps. Plant and Animal Genome XV conference. San Diego, CA. 2007, P958.
Google Scholar
De Givry S, Bouchez M, Chabrier P, Milan D, Schiex T: CARTHAGENE: multipopulation integrated genetic and radiated hybrid mapping. Bioinformatics. 2005, 21 (8): 1703-1704. 10.1093/bioinformatics/bti222.
Article
PubMed
CAS
Google Scholar
MapDisto Genetics Software: CSSL Finder. [http://mapdisto.free.fr/CSSLFinder/]
Singh AK, Smartt J: The genome donors of the groundnut/peanut (Arachis hypogaea L.) revisited. Genetic Resources and Crop Evolution. 1998, 45 (2): 113-116. 10.1023/A:1008640631719.
Article
Google Scholar
Raina SN, Rani V, Kojima T, Ogihara Y, Singh KP, Devarumath RM: RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome. 2001, 44: 763-772. 10.1139/gen-44-5-763.
Article
PubMed
CAS
Google Scholar
Ferguson ME, Jarvis A, Stalker HT, Williams DE, Guarino L, Valls JFM, Pittman RN, Simpson CE, Bramel PJ: Biogeography of wild Arachis (Leguminosae):distribution and environmental characterisation. Biodiversity and Conservation. 2005, 14 (7): 1777-1798. 10.1007/s10531-004-0699-7.
Article
Google Scholar
Jung S, Tate PL, Horn R, Kochert G, Moore K, Abbott AG: The phylogenetic relationship of possible progenitors of the cultivated peanut. J Hered. 2003, 94 (4): 334-340. 10.1093/jhered/esg061.
Article
PubMed
CAS
Google Scholar
Seijo JG, Lavia GI, Fernandez A, Krapovickas A, Ducasse D, Moscone EA: Physical mapping of the 5S and 18S-25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am J Bot. 2004, 91: 1294-1303. 10.3732/ajb.91.9.1294.
Article
PubMed
CAS
Google Scholar
Soltis DE, Soltis PS: Polyploidy: recurrent formation and genome evolution. Trends in Ecology & Evolution. 1999, 14 (9): 348-352. 10.1016/S0169-5347(99)01638-9.
Article
Google Scholar
Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF: Evolutionary genetics of genome merger and doubling in plants. Annual Review of Genetics. 2008, 42 (1): 443-461. 10.1146/annurev.genet.42.110807.091524.
Article
PubMed
CAS
Google Scholar
Wendel JF: Genome evolution in polyploids. Plant Mol Biol. 2000, 42 (1): 225-249. 10.1023/A:1006392424384.
Article
PubMed
CAS
Google Scholar
Rieseberg LH: Chromosomal rearrangements and speciation. Trends in Ecology & Evolution. 2001, 16 (7): 351-358. 10.1016/S0169-5347(01)02187-5.
Article
Google Scholar
Liu B, Wendel JF: Epigenetic phenomena and the evolution of plant allopolyploids. Molecular Phylogenetics and Evolution. 2003, 29 (3): 365-379. 10.1016/S1055-7903(03)00213-6.
Article
PubMed
CAS
Google Scholar
Clarkson JJ, Lim KY, Kovarik A, Chase MW, Knapp S, Leitch AR: Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytologist. 2005, 168 (1): 241-252. 10.1111/j.1469-8137.2005.01480.x.
Article
PubMed
CAS
Google Scholar
Adams KL, Wendel JF: Polyploidy and genome evolution in plants. Current Opinion in Plant Biology. 2005, 8 (2): 135-141. 10.1016/j.pbi.2005.01.001.
Article
PubMed
CAS
Google Scholar
Chen ZJ, Ni Z: Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays. 2006, 28 (3): 240-252. 10.1002/bies.20374.
Article
PubMed
Google Scholar
Nicolas SD, Mignon GL, Eber F, Coriton O, Monod H, Clouet V, Huteau V, Lostanlen A, Delourme R, Chalhoub B, et al: Homeologous recombination plays a major role in chromosome rearrangements that occur during meiosis of Brassica napus haploids. Genetics. 2007, 175 (2): 487-503. 10.1534/genetics.106.062968.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu B, Vega JM, Feldman M: Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences. Genome. 1998, 41 (4): 535-542. 10.1139/gen-41-4-535.
Article
PubMed
CAS
Google Scholar
Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF: Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome. 2001, 44 (3): 321-330. 10.1139/gen-44-3-321.
Article
PubMed
CAS
Google Scholar
Jannoo N, Grivet L, Chantret N, Garsmeur O, Glaszmann JC, Arruda P, D'Hont Al: Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome. The Plant Journal. 2007, 50 (4): 574-585. 10.1111/j.1365-313X.2007.03082.x.
Article
PubMed
CAS
Google Scholar
Garcia GM, Stalker HT, Kochert G: Introgression analysis of an interspecific hybrid population in peanuts (Arachis hypogaea L.) using RFLP and RAPD markers. Genome. 1995, 38 (1): 166-176.
Article
PubMed
CAS
Google Scholar
Garcia GM, Stalker HT, Shroeder E, Kochert G: Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. 1996, 836-845.
Google Scholar
Simpson CE, Starr JL: Registration of 'COAN' Peanut. Crop Science. 2001, 41: 918-918.
Article
Google Scholar
Simpson CE, Starr JL, Church GT, Burow MD, Paterson AH: Registration of 'NemaTAM' Peanut. Crop Science. 2003, 43: 1561-1561.
Article
Google Scholar
Zamir D: Improving plant breeding with exotic genetic libraries. Nat Rev Genet. 2001, 2 (12): 983-989. 10.1038/35103589.
Article
PubMed
CAS
Google Scholar
Stalker : Utilizing Arachis cardenasii as a source of Cercospora leafspot resistance for peanut improvement. Euphytica. 1984, 33 (2): 529-538. 10.1007/BF00021154.
Article
Google Scholar
Sharma SB, Ansari MA, Varaprasad KS, Singh AK, Reddy LJ: Resistance to Meloidogyne javanica in wild Arachis species. Genetic Resources and Crop Evolution. 1999, 46 (6): 557-568. 10.1023/A:1008754812257.
Article
Google Scholar
Reddy AS, Reddy LJ, Mallikarjuna N, Abdurahman MD, Reddy YV, Bramel PJ, Reddy DV: Identification of resistance to Peanut bud necrosis virus (PBNV) in wild Arachis germplasm. Annals of Applied Biology. 2000, 137: 135-139. 10.1111/j.1744-7348.2000.tb00045.x.
Article
Google Scholar
Pande S, Rao JN: Resistance of wild Arachis species to late leaf spot and rust in greenhouse trials. Plant Disease. 2001, 85: 851-855. 10.1094/PDIS.2001.85.8.851.
Article
Google Scholar
Nautiyal PC, Rajgopal K, Zala PV, Pujari DS, Basu M, Dhadhal BA, Nandre BM: Evaluation of wild Arachis species for abiotic stress tolerance: I. Thermal stress and leaf water relations. Euphytica. 2008, 159 (1–2): 43-57.
Google Scholar