Schüßler A, Schwarzott D, Walker C: A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research. 2001, 105: 1414-1421.
Google Scholar
Gehrig A, Schüßler A, Kluge M: Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (Cyanobacteria) is an ancestral member of the Glomales: Evidence by SSU rRNA analysis. J Mol Evol. 1996, 43: 71-81. 10.1007/BF02352301.
PubMed
CAS
Google Scholar
Berbee ML, Taylor JW: The Mycota, Fungal Molecular Evolution: Gene Trees and Geologic Time. Edited by: Mclaughlin JW, Mclaughlin EG, Lemke PA. NY: Springer-Verlag; 2000:229-246.
Smith SE, Read DJ, (eds): Mycorrhizal Symbiosis. San Diego, CA: Academic Press, Inc; 1997.
Google Scholar
Heijden van der MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR: Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature. 1998, 396: 69-72. 10.1038/23932.
Google Scholar
Heijden van der MGA, Scheublin TR: Functional traits in mycorrhizal ecology: their use for predicting the impact of arbuscular mycorrhizal fungal communities on plant growth and ecosystem functioning. New Phytol. 2007, 174 (2): 244-250. 10.1111/j.1469-8137.2007.02041.x.
PubMed
Google Scholar
Kosuta S, Chabaud M, Lougnon G, Gough C, Dénarié J, Barker DG, Bécard G: A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol. 2003, 131 (3): 952-962. 10.1104/pp.011882.
PubMed
CAS
PubMed Central
Google Scholar
Akiyama K, Matsuzaki K-I, Hayashi H: Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 2005, 435 (7043): 824-827. 10.1038/nature03608.
PubMed
CAS
Google Scholar
Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Bécard G, Séjalon-Delmas N: Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biology. 2006, 4 (7): 1239-1247. 10.1371/journal.pbio.0040226.
CAS
Google Scholar
Endre G, Kereszt A, Kevel Z, Mihacea S, Kaló P, Kiss G: A receptor kinase gene regulating symbiotic nodule development. Nature. 2002, 417: 962-966. 10.1038/nature00842.
PubMed
CAS
Google Scholar
Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szcyglowski K, Parniske M: A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature. 2002, 417: 959-962. 10.1038/nature00841.
PubMed
CAS
Google Scholar
Ané J-M, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GED, Ayax C, Levy J, Debelle F, Baek J-M, Kaló P, Rosenberg C, Roe BA, Long SR, Dénarié J, Cook DR: Medicago truncatula DMI1 Required for Bacterial and Fungal Symbioses in Legumes. Science. 2004, 303 (5662): 1364-1367. 10.1126/science.1092986.
PubMed
Google Scholar
Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu GJ, Kawaguchi M, Kawasaki S, Parniske M, Hayashi M: Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature. 2005, 433 (7025): 527-531. 10.1038/nature03237.
PubMed
CAS
Google Scholar
Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GED, Long SR: A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning. Proceedings of the National Academy of Sciences of the United States of America. 2004, 101 (13): 4701-4705. 10.1073/pnas.0400595101.
PubMed
CAS
PubMed Central
Google Scholar
Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ané JM, Lauber E, Bisseling T, Dénarié J, Rosenberg C, Debelle F: A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science. 2004, 303 (5662): 1361-1364. 10.1126/science.1093038.
PubMed
CAS
Google Scholar
Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H, Asamizu E, Sato S, Tabata S, Imaizumi-Anraku H, Umehara Y, Kouchi H, Murooka Y, Szczyglowski K, Downie JA, Parniske M, Hayashi M, Kawaguchi M: NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell. 2007, 19 (2): 610-624. 10.1105/tpc.106.046938.
PubMed
CAS
PubMed Central
Google Scholar
Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EMH, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, Jensen TH, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J: A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proceedings of the National Academy of Sciences of the United States of America. 2006, 103 (2): 359-364. 10.1073/pnas.0508883103.
PubMed
CAS
PubMed Central
Google Scholar
Chen C, Gao M, Liu J, Zhu H: Fungal symbiosis in rice requires an ortholog of a legume common symbiosis gene encoding a Ca2+/Calmodulin-dependent protein kinase. Plant Physiol. 2007, 145: 1619-1628. 10.1104/pp.107.109876.
PubMed
CAS
PubMed Central
Google Scholar
Markmann K, Giczey G, Parniske M: Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biology. 2008, 6 (3): 497-506. 10.1371/journal.pbio.0060068.
CAS
Google Scholar
Parniske M: Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease?. Curr Opin Plant Biol. 2000, 3: 320-328. 10.1016/S1369-5266(00)00088-1.
PubMed
CAS
Google Scholar
Kistner C, Parniske M: Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci. 2002, 7 (11): 1360-1385. 10.1016/S1360-1385(02)02356-7.
Google Scholar
Bonfante-Fasolo P: Anatomy and morphology of VA mycorrhizae. VA Mycorrhizae. Edited by: Powell CL, Bagyaraj DJ. Boca Raton, Florida: CRC Press; 1984:5-33.
Google Scholar
Gianinazzi-Pearson V: Plant cell responses to arbuscular mycorrhiza fungi: Getting to the roots of the symbiosis. Plant Cell. 1996, 8: 1871-1883. 10.1105/tpc.8.10.1871.
PubMed
PubMed Central
Google Scholar
Genre A, Bonfante P: Actin versus tubulin configuration in arbuscule-containing cells from mycorrhizal tobacco roots. New Phytol. 1998, 140: 745-752. 10.1046/j.1469-8137.1998.00314.x.
CAS
Google Scholar
Genre A, Bonfante P: Cytoskeleton-related proteins in tobacco mycorrhizal cells: g-tubulin and clathrin localisation. Eur J Histochem. 1999, 43: 105-111.
PubMed
CAS
Google Scholar
Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P: Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungus within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell. 2008, 20: 1407-1420. 10.1105/tpc.108.059014.
PubMed
CAS
PubMed Central
Google Scholar
Blancaflor EB, Zhao LM, Harrison MJ: Microtubule organization in root cells of Medicago truncatula during development of an arbuscular mycorrhizal symbiosis with Glomus versiforme. Protoplasma. 2001, 217 (4): 154-165. 10.1007/BF01283396.
PubMed
CAS
Google Scholar
Harrison MJ, Dewbre GR, Liu J: A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell. 2002, 14: 2413-2429. 10.1105/tpc.004861.
PubMed
CAS
PubMed Central
Google Scholar
Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y: Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature. 2005, 435 (7043): 819-823. 10.1038/nature03610.
PubMed
CAS
Google Scholar
Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y: The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol. 2005, 168 (3): 687-696. 10.1111/j.1469-8137.2005.01536.x.
PubMed
CAS
Google Scholar
Cruz C, Egsgaard H, Trujillo C, Ambus P, Requena N, Martins-Loucao MA, Jakobsen I: Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhizal fungi. Plant Physiol. 2007, 144 (2): 782-792. 10.1104/pp.106.090522.
PubMed
CAS
PubMed Central
Google Scholar
Cox G, Sanders F: Ultrastructure of the host-fungus interface in a vesicular-arbuscular mycorrhiza. New Phytol. 1974, 73: 901-912. 10.1111/j.1469-8137.1974.tb01319.x.
Google Scholar
Alexander T, Meier R, Toth R, Weber HC: Dynamics of arbuscule development and degeneration in mycorrhizas of Triticum aestivum L. and Avena sativa L. with reference to Zea mays L. New Phytol. 1988, 110: 363-370. 10.1111/j.1469-8137.1988.tb00273.x.
Google Scholar
Gianinazzi-Pearson V, Gianinazzi S: Morphological integration and functional compatibility between symbionts in vesicular-arbuscular endomycorrhizal associations. Cell to Cell Signals in Plant, Animal and Microbial Symbiosis. Edited by: Scannerini S, Smith DC, Bonfante-Fasolo P, Gianinazzi-Pearson V. Berlin: Springer-Verlag; 1988:73-84.
Google Scholar
Güimil S, Chang H-S, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U: Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proceedings of the National Academy of Sciences of the United States of America. 2005, 102 (22): 8066-8070. 10.1073/pnas.0502999102.
PubMed
PubMed Central
Google Scholar
Liu J, Blaylock L, Endre G, Cho J, Town CD, VandenBosch K, Harrison MJ: Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of the arbuscular mycorrhizal symbiosis. Plant Cell. 2003, 15: 2106-2123. 10.1105/tpc.014183.
PubMed
CAS
PubMed Central
Google Scholar
Küster H, Hohnjec N, Krajinski F, El Yahyaoui F, Manthey K, Gouzy J, Dondrup M, Meyer F, Kalinowski J, Brechenmacher L, van Tuinen D, Gianinazzi-Pearson V, Pühler A, Gamas P, Becker A: Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. Journal of Biotechnology. 2004, 108 (2): 95-113. 10.1016/j.jbiotec.2003.11.011.
PubMed
Google Scholar
Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H: Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol. 2005, 137 (4): 1283-1301. 10.1104/pp.104.056572.
PubMed
CAS
PubMed Central
Google Scholar
Liu J, Maldonado-Mendoza IE, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ: The arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. The Plant Journal. 2007, 50: 529-544. 10.1111/j.1365-313X.2007.03069.x.
PubMed
CAS
Google Scholar
Brechenmacher L, Weidmann S, van Tuinen D, Chatagnier O, Gianinazzi S, Franken P, Gianinazzi-Pearson V: Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula – Glomus mosseae interactions. Mycorrhiza. 2004, 14 (4): 253-262. 10.1007/s00572-003-0263-4.
PubMed
CAS
Google Scholar
Weidmann S, Sanchez-Calderon L, Descombin J, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V: Fungal elicitation of signal transduction related plant genes precedes mycorrhiza establishment and requires the DMI 3 gene in Medicago truncatula. Molecular Plant Microbe Interactions. 2004, 17: 1385-1393. 10.1094/MPMI.2004.17.12.1385.
PubMed
CAS
Google Scholar
Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Küster H, Krajinski F: Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol Plant-Microbe Interact. 2003, 16 (4): 306-314. 10.1094/MPMI.2003.16.4.306.
PubMed
CAS
Google Scholar
Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Pühler A, Perlick AM, Küster H: Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant-Microbe Interact. 2004, 17 (10): 1063-1077. 10.1094/MPMI.2004.17.10.1063.
PubMed
CAS
Google Scholar
Frenzel A, Manthey K, Perlick AM, Meyer F, Pühler A, Küster H, Krajinski F: Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes. Mol Plant-Microbe Interact. 2005, 18 (8): 771-782. 10.1094/MPMI-18-0771.
PubMed
CAS
Google Scholar
Harrison MJ: Signaling in the arbuscular mycorrhizal symbiosis. Annual reviews of Microbiology. 2005, 59: 19-42. 10.1146/annurev.micro.58.030603.123749.
CAS
Google Scholar
Küster H, Vieweg MF, Manthey K, Baier MC, Hohnjec N, Perlick AM: Identification and expression regulation of symbiotically activated legume genes. Phytochemistry. 2007, 68 (1): 8-18. 10.1016/j.phytochem.2006.09.029.
PubMed
Google Scholar
Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang ZP, Goldstein SR, Weiss RA, Liotta LA: Laser capture microdissection. Science. 1996, 274 (5289): 998-1001. 10.1126/science.274.5289.998.
PubMed
CAS
Google Scholar
Luo L, Salunga RC, Guo HQ, Bittner A, Joy KC, Galindo JE, Xiao HN, Rogers KE, Wan JS, Jackson MR, Erlander MG: Gene expression profiles of laser-captured adjacent neuronal subtypes. Nature Medicine. 1999, 5 (1): 117-122. 10.1038/4806.
PubMed
CAS
Google Scholar
Asano T, Masumura T, Kusano H, Kikuchi S, Kurita A, Shimada H, Kadowaki K-i: Construction of a specialized cDNA library from plant cells isolated by laser capture microdissection: toward comprehensive analysis of the genes expressed in the rice phloem. Plant J. 2002, 32 (3): 401-408. 10.1046/j.1365-313X.2002.01423.x.
PubMed
CAS
Google Scholar
Nakazono M, Qiu F, Borsuk LA, Schnable PS: Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: Identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell. 2003, 15 (3): 583-596. 10.1105/tpc.008102.
PubMed
CAS
PubMed Central
Google Scholar
Kerk NM, Ceserani S, Tausta L, Sussez IM, Nelson TM: Laser capture microdissection of cells from plant tissues. Plant Physiol. 2003, 132: 27-35. 10.1104/pp.102.018127.
PubMed
CAS
PubMed Central
Google Scholar
Day RC, McNoe LA, Macknight RC: Transcript analysis of laser microdissected plant cells. Physiologia Plantarum. 2007, 129 (2): 267-282. 10.1111/j.1399-3054.2006.00829.x.
CAS
Google Scholar
Ramsay K, Wang ZH, Jones MGK: Using laser capture microdissection to study gene expression in early stages of giant cells induced by root-knot nematodes. Molecular Plant Pathology. 2004, 5 (6): 587-592. 10.1111/j.1364-3703.2004.00255.x.
PubMed
CAS
Google Scholar
Klink VP, Alkharouf N, MacDonald M, Matthews B: Laser capture microdissection (LCM) and expression analyses of Glycine max (soybean) syncytium containing root regions formed by the plant pathogen Heterodera glycines (soybean cyst nematode). Plant Mol Biol. 2005, 59 (6): 965-979. 10.1007/s11103-005-2416-7.
PubMed
CAS
Google Scholar
Klink VP, Overall CC, Alkharouf NW, MacDonald MH, Matthews BF: Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean (Glycine max) roots infected by the soybean cyst nematode (Heterodera glycines). Planta. 2007, 226 (6): 1389-1409. 10.1007/s00425-007-0578-z.
PubMed
CAS
Google Scholar
Ithal N, Recknor J, Nettleton D, Maier T, Baum TJ, Mitchum MG: Developmental transcript profiling of cyst nematode feeding cells in soybean roots. Mol Plant-Microbe Interact. 2007, 20 (5): 510-525. 10.1094/MPMI-20-5-0510.
PubMed
CAS
Google Scholar
Ithal N, Recknor J, Nettleton D, Hearne L, Maier T, Baum TJ, Mitchum MG: Parallel genome-wide expression profiling of host and pathogen during soybean cyst nematode infection of soybean. Mol Plant-Microbe Interact. 2007, 20: 293-305. 10.1094/MPMI-20-3-0293.
PubMed
CAS
Google Scholar
Tang WH, Coughlan S, Crane E, Beatty M, Duvick J: The application of laser microdissection to in planta gene expression profiling of the maize anthracnose stalk rot fungus Colletotrichum graminicola. Mol Plant-Microbe Interact. 2006, 19 (11): 1240-1250. 10.1094/MPMI-19-1240.
PubMed
CAS
Google Scholar
Balestrini R, Gomez-Ariza J, Lanfranco L, Bonfante P: Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant-Microbe Interact. 2007, 20 (9): 1055-1062. 10.1094/MPMI-20-9-1055.
PubMed
CAS
Google Scholar
Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai X, Zhao PX, Tang Y, Udvardi MK: A gene expression atlas of the model legume Medicago truncatula. The Plant Journal. 2008, 55 (3): 504-513. 10.1111/j.1365-313X.2008.03519.x.
PubMed
CAS
Google Scholar
Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J: A central integrator of transcription networks in plant stress and energy signalling. Nature. 2007, 448 (7156): 938-U910. 10.1038/nature06069.
PubMed
CAS
Google Scholar
Kaló P, Gleason C, Edwards A, Marsh J, Mitra RM, Hirsch S, Jakab J, Sims S, Long SR, Rogers J, Kiss GB, Downie JA, Oldroyd GED: Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science. 2005, 308 (5729): 1786-1789. 10.1126/science.1110951.
PubMed
Google Scholar
Smit P, Raedts J, Portyanko V, Debelle F, Gough C, Bisseling T, Geurts R: NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science. 2005, 308 (5729): 1789-1791. 10.1126/science.1111025.
PubMed
CAS
Google Scholar
Drissner D, Kunze G, Callewaert N, Gehrig P, Tamasloukht M, Boller T, Felix G, Amrhein N, Bucher M: Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis. Science. 2007, 318 (5848): 265-268. 10.1126/science.1146487.
PubMed
CAS
Google Scholar
Arrighi JF, Barre A, Ben Amor B, Bersoult A, Soriano LC, Mirabella R, de Carvalho-Niebel F, Journet EP, Ghérardi M, Huguet T, Geurts R, Dénarié J, Rougé P, Gough C: The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol. 2006, 142: 265-279. 10.1104/pp.106.084657.
PubMed
CAS
PubMed Central
Google Scholar
Ben Amor B, Shaw SL, Oldroyd GED, Maillet F, Penmetsa RV, Cook D, Long SR, Denarie J, Gough C: The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J. 2003, 34 (4): 495-506. 10.1046/j.1365-313X.2003.01743.x.
CAS
Google Scholar
Walker C, Schussler A: Nomenclatural clarification and new taxa in the Glomeromycota. Mycoloogical Research. 2004, 108: 981-982. 10.1017/S0953756204231173.
Google Scholar
Maldonado-Mendoza IE, Dewbre GR, van Buuren ML, Versaw WK, Harrison MJ: Methods to estimate the proportion of plant and fungal RNA in an arbuscular mycorrhiza. Mycorrhiza. 2002, 12: 67-74. 10.1007/s00572-001-0149-2.
PubMed
CAS
Google Scholar
Steedman HF: Polyester wax; a new ribbon embedding medium for histology. Nature. 1957, 179: 1345-1348. 10.1038/1791345a0.
PubMed
CAS
Google Scholar
Steedman HF: Ester Wax 1960 – a Histological Embedding Medium. Quarterly Journal of Microscopical Science. 1960, 101 (4): 459-462.
Google Scholar
Steedman HF: Tropical Ester Wax 1960. Quarterly Journal of Microscopical Science. 1960, 101: 463-464.
Google Scholar
Lenoir G, Williamson P, Holthuis JC: On the origin of lipid asymmetry: the flip side of ion transport. Current Opinion in Chemical Biology. 2007, 11 (6): 654-661. 10.1016/j.cbpa.2007.09.008.
PubMed
CAS
Google Scholar
Balhadere PV, Talbot NJ: PDE1 encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell. 2001, 13 (9): 1987-2004. 10.1105/tpc.13.9.1987.
PubMed
CAS
PubMed Central
Google Scholar
Peng JR, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP: The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes & Development. 1997, 11: 3194-3205. 10.1101/gad.11.23.3194.
CAS
Google Scholar
Silverstone AL, Ciampaglio CN, Sun TP: The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell. 1998, 10: 155-169. 10.1105/tpc.10.2.155.
PubMed
CAS
PubMed Central
Google Scholar
Laurenzio Ld, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN: The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell. 1996, 86: 423-433. 10.1016/S0092-8674(00)80115-4.
PubMed
Google Scholar
Bolle C: The role of GRAS proteins in plant signal transduction and development. Planta. 2004, 218: 683-692. 10.1007/s00425-004-1203-z.
PubMed
CAS
Google Scholar
Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J: A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature. 2003, 425 (6958): 637-640. 10.1038/nature02045.
PubMed
CAS
Google Scholar
Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Gronlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J: Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature. 2003, 425 (6958): 585-592. 10.1038/nature02039.
PubMed
CAS
Google Scholar
Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R: LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science. 2003, 302 (5645): 630-633. 10.1126/science.1090074.
PubMed
CAS
Google Scholar
Bateman A, Bycroft M: The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol. 2000, 299: 1113-1119. 10.1006/jmbi.2000.3778.
PubMed
CAS
Google Scholar
Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Prome JC, Dénarié J: Symbiotic host-specificity of Rhizobium meliloti Is determined by a sulfated and acylated glucosamine oligosaccharide signal. Nature. 1990, 344: 781-784. 10.1038/344781a0.
PubMed
CAS
Google Scholar
Spaink HP, Sheeley DM, Vanbrussel AAN, Glushka J, York WS, Tak T, Geiger O, Kennedy EP, Reinhold VN, Lugtenberg BJJ: A novel highly unsaturated fatty-acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature. 1991, 354: 125-130. 10.1038/354125a0.
PubMed
CAS
Google Scholar
Schliemann W, Ammer F, Strack D: Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry. 2007, 69: 112-146. 10.1016/j.phytochem.2007.06.032.
PubMed
Google Scholar
Jones A, Davies HM, Voelker TA: Palmitoyl-acyl carrier potein (Acp) thioesterase and the evolutionary origin of plant acyl-acp thioesterases. Plant Cell. 1995, 7: 359-371. 10.1105/tpc.7.3.359.
PubMed
CAS
PubMed Central
Google Scholar
Trepanier M, Bécard G, Moutoglis P, Willemot C, Gagne S, Avis TJ, Rioux JA: Dependence of arbuscular-mycorrhizal fungi on their plant host for palmitic acid synthesis. Appl Environ Microbiol. 2005, 71 (9): 5341-5347. 10.1128/AEM.71.9.5341-5347.2005.
PubMed
CAS
PubMed Central
Google Scholar
Trieu AT, Harrison MJ: Rapid transformation of Medicago truncatula: regeneration via shoot organogenesis. Plant Cell Rep. 1996, 16: 6-11. 10.1007/BF01275439.
PubMed
CAS
Google Scholar
Javot H, Harrison MJ: Agrobacterium-mediated transformation of M. truncatula. The Medicago truncatula Handbook. Edited by: Mathesius U. 2006, 25-29.
Google Scholar
St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA: Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res. 1996, 100 (3): 328-332. 10.1016/S0953-7562(96)80164-X.
Google Scholar
Harrison MJ, Dixon RA: Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant-Microbe Interact. 1993, 6: 643-654.
CAS
Google Scholar
Liu J, Blaylock L, Harrison MJ: cDNA arrays as tools to identify mycorrhiza-regulated genes: identification of mycorrhiza-induced genes that encode or generate signaling molecules implicated in the control of root growth. Can J Bot. 2004, 82: 1177-1185. 10.1139/b04-048.
CAS
Google Scholar
McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA: A new method that gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 1990, 115: 495-501. 10.1111/j.1469-8137.1990.tb00476.x.
Google Scholar
Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000, 132: 365-386.
PubMed
CAS
Google Scholar
Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS: Touchdown PCR to circumvent spurious priming during gene amplification. Nucl Acids Res. 1991, 19: 4008-4008. 10.1093/nar/19.14.4008.
PubMed
CAS
PubMed Central
Google Scholar
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003, 4 (2): 249-264. 10.1093/biostatistics/4.2.249.
PubMed
Google Scholar
Li C, Wong WH: Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection. Proceedings of the National Academy of Sciences of the United States of America. 2001, 98 (1): 31-36. 10.1073/pnas.011404098.
PubMed
CAS
PubMed Central
Google Scholar
Dozmorov I, Centola M: An associative analysis of gene expression array data. Bioinformatics. 2003, 19: 204-211. 10.1093/bioinformatics/19.2.204.
PubMed
CAS
Google Scholar
Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America. 2003, 100: 9440-9445. 10.1073/pnas.1530509100.
PubMed
CAS
PubMed Central
Google Scholar
Leek JT, Monsen E, Dabney AR, Storey JD: EDGE: extraction and analysis of differential gene expression. Bioinformatics. 2006, 22 (4): 507-508. 10.1093/bioinformatics/btk005.
PubMed
CAS
Google Scholar
Johnson L: Iron and siderophores in fungal-host interactions. Mycological Research. 2008, 112: 170-183. 10.1016/j.mycres.2007.11.012.
PubMed
CAS
Google Scholar
Oide S, Krasnoff SB, Gibson DM, Turgeon BG: Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae. Eukaryotic Cell. 2007, 6 (8): 1339-1353. 10.1128/EC.00111-07.
PubMed
CAS
PubMed Central
Google Scholar
Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG: NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell. 2006, 18 (10): 2836-2853. 10.1105/tpc.106.045633.
PubMed
CAS
PubMed Central
Google Scholar