Agre P, Kozono D: Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett. 2003, 555 (1): 72-78. 10.1016/S0014-5793(03)01083-4.
Article
PubMed
Google Scholar
Heymann JB, Engel A: Aquaporins: Phylogeny, Structure, and Physiology of Water Channels. News Physiol Sci. 1999, 14: 187-193.
PubMed
Google Scholar
King LS, Kozono D, Agre P: From structure to disease: the evolving tale of aquaporin biology. Nature reviews. 2004, 5 (9): 687-698. 10.1038/nrm1469.
Article
PubMed
Google Scholar
Maurel C: Plant aquaporins: novel functions and regulation properties. FEBS Lett. 2007, 581 (12): 2227-2236. 10.1016/j.febslet.2007.03.021.
Article
PubMed
Google Scholar
Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P: The role of aquaporins in cellular and whole plant water balance. Biochim Biophys Acta. 2000, 1465 (1–2): 324-342.
Article
PubMed
Google Scholar
Alexandersson E, Fraysse L, Sjovall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P: Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol. 2005, 59 (3): 469-484. 10.1007/s11103-005-0352-1.
Article
PubMed
Google Scholar
Zardoya R: Phylogeny and evolution of the major intrinsic protein family. Biol Cell. 2005, 97 (6): 397-414. 10.1042/BC20040134.
Article
PubMed
Google Scholar
Fu D, Libson A, Miercke LJ, Weitzman C, Nollert P, Krucinski J, Stroud RM: Structure of a glycerol-conducting channel and the basis for its selectivity. Science. 2000, 290 (5491): 481-486. 10.1126/science.290.5491.481.
Article
PubMed
Google Scholar
Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y: Structural determinants of water permeation through aquaporin-1. Nature. 2000, 407 (6804): 599-605. 10.1038/35036519.
Article
PubMed
Google Scholar
Savage DF, Egea PF, Robles-Colmenares Y, O'Connell JD, Stroud RM: Architecture and selectivity in aquaporins: 2.5 Å X-ray structure of aquaporin Z. PLoS Biol. 2003, 1 (3): E72-10.1371/journal.pbio.0000072.
Article
PubMed
PubMed Central
Google Scholar
Tornroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P: Structural mechanism of plant aquaporin gating. Nature. 2006, 439 (7077): 688-694. 10.1038/nature04316.
Article
PubMed
Google Scholar
Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, Walz T: Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature. 2005, 438 (7068): 633-638. 10.1038/nature04321.
Article
PubMed
PubMed Central
Google Scholar
Lee JK, Kozono D, Remis J, Kitagawa Y, Agre P, Stroud RM: Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 Å. Proc Natl Acad Sci USA. 2005, 102 (52): 18932-18937. 10.1073/pnas.0509469102.
Article
PubMed
PubMed Central
Google Scholar
Hiroaki Y, Tani K, Kamegawa A, Gyobu N, Nishikawa K, Suzuki H, Walz T, Sasaki S, Mitsuoka K, Kimura K, et al: Implications of the aquaporin-4 structure on array formation and cell adhesion. J Mol Biol. 2006, 355 (4): 628-639. 10.1016/j.jmb.2005.10.081.
Article
PubMed
Google Scholar
Beitz E, Wu B, Holm LM, Schultz JE, Zeuthen T: Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc Natl Acad Sci USA. 2006, 103 (2): 269-274. 10.1073/pnas.0507225103.
Article
PubMed
PubMed Central
Google Scholar
Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P: The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol. 2001, 126 (4): 1358-1369. 10.1104/pp.126.4.1358.
Article
PubMed
PubMed Central
Google Scholar
Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ: From genome to function: the Arabidopsis aquaporins. Genome Biol. 2002, 3 (1): research0001.0001-0001.0017.
Google Scholar
Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R: Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol. 2001, 125 (3): 1206-1215. 10.1104/pp.125.3.1206.
Article
PubMed
PubMed Central
Google Scholar
Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M: Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol. 2005, 46 (9): 1568-1577. 10.1093/pcp/pci172.
Article
PubMed
Google Scholar
Gustavsson S, Lebrun AS, Norden K, Chaumont F, Johanson U: A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels. Plant Physiol. 2005, 139 (1): 287-295. 10.1104/pp.105.063198.
Article
PubMed
PubMed Central
Google Scholar
Jahn TP, Moller AL, Zeuthen T, Holm LM, Klaerke DA, Mohsin B, Kuhlbrandt W, Schjoerring JK: Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett. 2004, 574 (1–3): 31-36. 10.1016/j.febslet.2004.08.004.
Article
PubMed
Google Scholar
Liu LH, Ludewig U, Gassert B, Frommer WB, von Wiren N: Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol. 2003, 133 (3): 1220-1228. 10.1104/pp.103.027409.
Article
PubMed
PubMed Central
Google Scholar
Loque D, Ludewig U, Yuan L, von Wiren N: Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol. 2005, 137 (2): 671-680. 10.1104/pp.104.051268.
Article
PubMed
PubMed Central
Google Scholar
Wallace IS, Roberts DM: Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels. Biochemistry. 2005, 44 (51): 16826-16834. 10.1021/bi0511888.
Article
PubMed
Google Scholar
Uehlein N, Fileschi K, Eckert M, Bienert GP, Bertl A, Kaldenhoff R: Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry. 2007, 68 (1): 122-129. 10.1016/j.phytochem.2006.09.033.
Article
PubMed
Google Scholar
Choi WG, Roberts DM: Arabidopsis NIP2;1: A major intrinsic protein transporter of lactic acid induced by anoxic stress. J Biol Chem. 2007
Google Scholar
Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T: The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell. 2006, 18 (6): 1498-1509. 10.1105/tpc.106.041640.
Article
PubMed
PubMed Central
Google Scholar
Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M: A silicon transporter in rice. Nature. 2006, 440 (7084): 688-691. 10.1038/nature04590.
Article
PubMed
Google Scholar
Flexas J, Ribas-Carbo M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R: Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J. 2006, 48 (3): 427-439. 10.1111/j.1365-313X.2006.02879.x.
Article
PubMed
Google Scholar
Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R: The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature. 2003, 425 (6959): 734-737. 10.1038/nature02027.
Article
PubMed
Google Scholar
Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M: Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett. 2005, 579 (25): 5814-5820.
Article
PubMed
Google Scholar
Bansal A, Sankararamakrishnan R: Homology modeling of major intrinsic proteins in rice, maize and Arabidopsis: comparative analysis of transmembrane helix association and aromatic/arginine selectivity filters. BMC Struct Biol. 2007, 7: 27-10.1186/1472-6807-7-27.
Article
PubMed
PubMed Central
Google Scholar
Wallace IS, Roberts DM: Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiol. 2004, 135 (2): 1059-1068. 10.1104/pp.103.033415.
Article
PubMed
PubMed Central
Google Scholar
Douzery EJ, Snell EA, Bapteste E, Delsuc F, Philippe H: The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils?. Proc Natl Acad Sci USA. 2004, 101 (43): 15386-15391. 10.1073/pnas.0403984101.
Article
PubMed
PubMed Central
Google Scholar
Cove D: The moss Physcomitrella patens. Annu Rev Genet. 2005, 39: 339-358. 10.1146/annurev.genet.39.073003.110214.
Article
PubMed
Google Scholar
Cove D, Bezanilla M, Harries P, Quatrano R: Mosses as model systems for the study of metabolism and development. Annu Rev Plant Biol. 2006, 57: 497-520. 10.1146/annurev.arplant.57.032905.105338.
Article
PubMed
Google Scholar
DOE Joint Genome Institute. [http://www.jgi.doe.gov]
Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, et al: The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science. 2007
Google Scholar
Carey RE, Cosgrove DJ: Portrait of the Expansin Superfamily in Physcomitrella patens: Comparisons with Angiosperm Expansins. Ann Bot (Lond). 2007, 99 (6): 1131-1141. 10.1093/aob/mcm044.
Article
Google Scholar
Borstlap AC: Early diversification of plant aquaporins. Trends Plant Sci. 2002, 7 (12): 529-530. 10.1016/S1360-1385(02)02365-8.
Article
PubMed
Google Scholar
Lienard D, Durambur G, Kiefer-Meyer MC, Nogue F, Menu-Bouaouiche L, Charlot F, Gomord V, Lassalles JP: Water Transport by Aquaporins in the Extant Plant Physcomitrella patens. Plant Physiol. 2008, 146 (3): 1207-1218. 10.1104/pp.107.111351.
Article
PubMed
PubMed Central
Google Scholar
Rensing SA, Fritzowsky D, Lang D, Reski R: Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens. BMC Genomics. 2005, 6 (1): 43-10.1186/1471-2164-6-43.
Article
PubMed
PubMed Central
Google Scholar
Jauh GY, Phillips TE, Rogers JC: Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell. 1999, 11 (10): 1867-1882. 10.1105/tpc.11.10.1867.
Article
PubMed
PubMed Central
Google Scholar
Becker B: Function and evolution of the vacuolar compartment in green algae and land plants (Viridiplantae). Int Rev Cytol. 2007, 264: 1-24.
Article
PubMed
Google Scholar
Hunter PR, Craddock CP, Di Benedetto S, Roberts LM, Frigerio L: Fluorescent reporter proteins for the tonoplast and the vacuolar lumen identify a single vacuolar compartment in Arabidopsis cells. Plant Physiol. 2007, 145 (4): 1371-1382. 10.1104/pp.107.103945.
Article
PubMed
PubMed Central
Google Scholar
Olbrich A, Hillmer S, Hinz G, Oliviusson P, Robinson DG: Newly formed vacuoles in root meristems of barley and pea seedlings have characteristics of both protein storage and lytic vacuoles. Plant Physiol. 2007, 145 (4): 1383-1394. 10.1104/pp.107.108985.
Article
PubMed
PubMed Central
Google Scholar
Forrest KL, Bhave M: Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Funct Integr Genomics. 2007, 7 (4): 263-289. 10.1007/s10142-007-0049-4.
Article
PubMed
Google Scholar
Cabello-Hurtado F, Ramos J: Isolation and functional analysis of the glycerol permease activity of two new nodulin-like intrinsic proteins from salt stressed roots of the halophyte Atriplex nummularia. Plant Sci. 2004, 166 (3): 633-640. 10.1016/j.plantsci.2003.11.001.
Article
Google Scholar
Weaver CD, Roberts DM: Determination of the site of phosphorylation of nodulin 26 by the calcium-dependent protein kinase from soybean nodules. Biochemistry. 1992, 31 (37): 8954-8959. 10.1021/bi00152a035.
Article
PubMed
Google Scholar
Epstein E: Silicon. Annu Rev Plant Physiol Plant Mol Biol. 1999, 50: 641-664. 10.1146/annurev.arplant.50.1.641.
Article
PubMed
Google Scholar
Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K: WoLF PSORT: protein localization predictor. Nucleic acids research. 2007, W585-587. 10.1093/nar/gkm259. 35 Web Server
Article
PubMed
PubMed Central
Google Scholar
Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, et al: The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006, 313 (5793): 1596-1604. 10.1126/science.1128691.
Article
PubMed
Google Scholar
Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ: Evolution of genome size in Brassicaceae. Ann Bot (Lond). 2005, 95 (1): 229-235. 10.1093/aob/mci016.
Article
Google Scholar
Heymann JB, Engel A: Structural clues in the sequences of the aquaporins. J Mol Biol. 2000, 295 (4): 1039-1053. 10.1006/jmbi.1999.3413.
Article
PubMed
Google Scholar
EMBL-EBI SRS homepage. [http://srs.ebi.ac.uk]
EMBL-EBI SRS FTP. [ftp://ftp.ebi.ac.uk/pub/databases/embl/align/]
EMBL Nucleotide Sequence Database. [http://www.ebi.ac.uk/embl/]
NCBI. [http://www.ncbi.nlm.nih.gov]
Swofford D: PAUP*: phylogenetic analysis using parsimony (*and other methods). 2000, Sunderland, MA: Sinnauer Associates, 4.0b10
Google Scholar
Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003, 19 (12): 1572-1574. 10.1093/bioinformatics/btg180.
Article
PubMed
Google Scholar
Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992, 8 (3): 275-282.
PubMed
Google Scholar
Page RD: TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996, 12 (4): 357-358.
PubMed
Google Scholar