Mouse Genome Sequencing Consortium: Initial sequencing and comparative analysis of the mouse genome. Nature. 2002, 420: 520-562. 10.1038/nature01262.
Article
Google Scholar
Hedges SB: The origin and evolution of model organisms. Nat Rev Genet. 2002, 3: 838-849. 10.1038/nrg929.
Article
PubMed
Google Scholar
Zhao S, Shetty J, Hou L, Delcher A, Zhu B, Osoegawa K, de Jong P, Nierman WC, Strausberg RL, Fraser CM: Human, mouse, and rat genome large-scale rearrangements: Stability versus speciation. Genome Res. 2004, 14: 1851-1860. 10.1101/gr.2663304.
Article
PubMed
PubMed Central
Google Scholar
International Chicken Genome Sequencing Consortium: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004, 432: 695-716. 10.1038/nature03154.
Article
Google Scholar
Thomas JW, Touchman JW, Blakesley RW, Bouffard GG, Beckstrom-Sternberg SM, Margulies EH, Blanchette M, Siepel AC, Thomas PJ, McDowell JC, Maskeri B, Hansen NF, Schwartz MS, Weber RJ, Kent WJ, Karolchik D, Bruen TC, Bevan R, Cutler DJ, Schwartz S, Elnitski L, Idol JR, Prasad AB, Lee-Lin SQ, Maduro VV, Summers TJ, Portnoy ME, Dietrich NL, Akhter N, Ayele K, Benjamin B, Cariaga K, Brinkley CP, Brooks SY, Granite S, Guan X, Gupta J, Haghighi P, Ho SL, Huang MC, Karlins E, Laric PL, Legaspi R, Lim MJ, Maduro QL, Masiello CA, Mastrian SD, McCloskey JC, Pearson R, Stantripop S, Tiongson EE, Tran JT, Tsurgeon C, Vogt JL, Walker MA, Wetherby KD, Wiggins LS, Young AC, Zhang LH, Osoegawa K, Zhu B, Zhao B, Shu CL, De Jong PJ, Lawrence CE, Smit AF, Chakravarti A, Haussler D, Green P, Miller W, Green ED: Comparative analyses of multi-species sequences from targeted genomic regions. Nature. 2003, 424: 788-793. 10.1038/nature01858.
Article
PubMed
Google Scholar
Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR: Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci U S A. 2004, 101: 15289-15294. 10.1073/pnas.0402251101.
Article
PubMed
PubMed Central
Google Scholar
Moore G, Devos KM, Wang Z, Gale MD: Cereal genome evolution. grasses, line up and form a circle. Curr Biol. 1995, 5: 737-739. 10.1016/S0960-9822(95)00148-5.
Article
PubMed
Google Scholar
Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB: High density molecular linkage maps of the tomato and potato genomes. Genetics. 1992, 132: 1141-1160.
PubMed
PubMed Central
Google Scholar
Salse J, Piegu B, Cooke R, Delseny M: New in silico insight into the synteny between rice (oryza sativa L.) and maize (zea mays L.) highlights reshuffling and identifies new duplications in the rice genome. Plant J. 2004, 38: 396-409. 10.1111/j.1365-313X.2004.02058.x.
Article
PubMed
Google Scholar
Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S: A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science. 2002, 296: 92-100. 10.1126/science.1068275.
Article
PubMed
Google Scholar
Menanciohautea D, Fatokun CA, Kumar L, Danesh D, Young ND: Comparative genome analysis of mungbean (Vigna-radiata l-wilczek) and cowpea (V-unguiculatal walpers) using RFLP mapping data. Theoretical & Applied Genetics. 1993, 86: 797-810. 10.1007/BF00212605.
Article
Google Scholar
Boutin SR, Young ND, Olson TC, Yu ZH, Shoemaker RC, Vallejos CE: Genome conservation among three legume genera detected with DNA markers. Genome. 1995, 38: 928-937.
Article
PubMed
Google Scholar
Lee JM, Grant D, Vallejos CE, Shoemaker RC: Genome organization in dicots. II. Arabidopsis as a 'bridging species' to resolve genome evolution events among legumes. Theoretical & Applied Genetics. 2001, 103: 765-773. 10.1007/s001220100658.
Article
Google Scholar
Young Nevin, Cannon Steven, Shusei Sato , Dongjin Kim , Cook Douglas, Town Chris, Roe Bruce, Satoshi Tabata : Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiology. 2005, 137: 1174-1181. 10.1104/pp.104.057034.
Article
PubMed
PubMed Central
Google Scholar
Yan HH, Mudge J, Kim DJ, Shoemaker RC, Cook DR, Young ND: Comparative physical mapping reveals features of microsynteny between Glycine max, Medicago truncatula, and Arabidopsis thaliana. Genome. 2004, 47: 141-155. 10.1139/g03-106.
Article
PubMed
Google Scholar
Yan HH, Mudge J, Kim DJ, Larsen D, Shoemaker RC, Cook DR, Young ND: Estimates of conserved microsynteny among the genomes of Glycine max, Medicago truncatula and Arabidopsis thaliana. Theor Appl Genet. 2003, 106: 1256-1265.
PubMed
Google Scholar
Concibido VC, Diers BW, Arelli PR: A decade of QTL mapping for cyst nematode resistance in soybean. Crop Science. 2004, 44: 1121-1131.
Article
Google Scholar
Concibido VC, Denny RL, Boutin SR, Hautea R, Orf JH, Young ND: DNA marker analysis of loci underlying resistance to soybean cyst nematode (Heterodera glycines ichinohe). Crop Science. 1994, 34: 240-246.
Article
Google Scholar
Concibido VC, Denny RL, Lange DA, Orf JH, Young ND: RFLP mapping and marker-assisted selection of soybean cyst nematode resistance in PI 209332. Crop Science. 1996, 36: 1643-1650.
Article
Google Scholar
Concibido VC, Young ND, Lange DA, Denny RL, Danesh D, Orf JH: Targeted comparative genome analysis and qualitative mapping of a major partial-resistance gene to the soybean cyst nematode. Theoretical & Applied Genetics. 1996, 93: 234-241. 10.1007/s001220050271.
Article
Google Scholar
Concibido VC, Lange DA, Denny RL, Orf JH, Young ND: Genome mapping of soybean cyst nematode resistance genes in Peking, PI 90763, and PI 88788 using DNA markers. Crop Science. 1997, 37: 258-264.
Article
Google Scholar
Meksem K, Doubler TW, Chancharoenchai K, Njiti VN, Chang SJC, Arelli APR, Cregan PE, Gray LE, Gibson PT, Lightfoot DA: Clustering among loci underlying soybean resistance to Fusarium solani, SDS and SCN in near-isogenic lines. Theoretical & Applied Genetics. 1999, 99: 1131-1142. 10.1007/s001220051317.
Article
Google Scholar
Meksem K, Pantazopoulos P, Njiti VN, Hyten LD, Arelli PR, Lightfoot DA: 'Forrest' resistance to the soybean cyst nematode is bigenic: Saturation mapping of the Rhg1 and Rhg4 loci. Theoretical & Applied Genetics. 2001, 103: 710-717. 10.1007/s001220100597.
Article
Google Scholar
Webb DM, Baltazar BM, Raoarelli AP, Schupp J, Clayton K, Keim P, Beavis WD: Genetic mapping of soybean cyst nematode race-3 resistance loci in the soybean PI 437.654. Theoretical & Applied Genetics. 1995, 91: 574-581.
Article
Google Scholar
Cregan PB, Mudge J, Fickus EW, Danesh D, Denny R, Young ND: Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus. Theoretical & Applied Genetics. 1999, 99: 811-818. 10.1007/s001220051300.
Article
Google Scholar
Meksem K, Zobrist K, Ruben E, Hyten D, Quanzhou T, Zhang HB, Lightfoot DA: Two large-insert soybean genomic libraries constructed in a binary vector: Applications in chromosome walking and genome wide physical mapping. Theoretical & Applied Genetics. 2000, 101: 747-755. 10.1007/s001220051540.
Article
Google Scholar
Meksem K, Ruben E, Hyten DL, Schmidt ME, Lightfoot DA: High-throughput genotyping for a polymorphism linked to soybean cyst nematode resistance gene Rhg4 by using TaqMan (TM) probes. Molecular Breeding. 2001, 7: 63-71. 10.1023/A:1009610009663.
Article
Google Scholar
Meksem K, Ruben E, Hyten D, Triwitayakorn K, Lightfoot DA: Conversion of AFLP bands into high-throughput DNA markers. Mol Genet Genomics. 2001, 265: 207-214. 10.1007/s004380000418.
Article
PubMed
Google Scholar
Foster-Hartnett D, Mudge J, Larsen D, Danesh D, Yan H, Denny R, Penuela S, Young ND: Comparative genomic analysis of sequences sampled from a small region on soybean (Glycine max) molecular linkage group G. Genome. 2002, 45: 634-645. 10.1139/g02-027.
Article
PubMed
Google Scholar
Danesh D, Penuela S, Mudge J, Denny RL, Nordstrom H, Martinez JP, Young ND: A bacterial artificial chromosome library for soybean and identification of clones near a major cyst nematode resistance gene. Theoretical & Applied Genetics. 1998, 96: 196-202. 10.1007/s001220050727.
Article
Google Scholar
Clough SJ, Tuteja JH, Li M, Marek LF, Shoemaker RC, Vodkin LO: Features of a 103-kb gene-rich region in soybean include an inverted perfect repeat cluster of CHS genes comprising the I locus. Genome. 2004, 47: 819-831. 10.1139/g04-049.
Article
PubMed
Google Scholar
Hauge BM, Wang ML, Parsons JD, Parnell LD: Nucleic acid molecules and other molecules associated with soybean cyst nematode resistance. Patent: WO. 0151627, -A 2 19-JUL-2001.
Google Scholar
Medicago truncatula sequencing resources. [http://www.medicago.org/genome/].
Ku HM, Vision T, Liu J, Tanksley SD: Comparing sequenced segments of the tomato and arabidopsis genomes: Large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci U S A. 2000, 97: 9121-9126. 10.1073/pnas.160271297.
Article
PubMed
PubMed Central
Google Scholar
Lynch M, Conery JS: The evolutionary fate and consequences of duplicate genes. Science. 2000, 290: 1151-1155. 10.1126/science.290.5494.1151.
Article
PubMed
Google Scholar
Cannon S, Makarevich G, Savage E, Denny R, Mudge J, Seigfried M, Lai H, Ashfield T, Roe BA, Young ND, Innes R: A phylogenetic and structural comparison of homologous Rpg1 R-gene-containing regions in soybean and Medicago truncatula. Plant and Animal Genomes XIII: San Diego, CA. 2005, P437.
Google Scholar
Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O'Donovan C, Redaschi N, Yeh LS: UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2004, D115-9. 10.1093/nar/gkh131.
Google Scholar
Baumgarten A, Cannon S, Spangler R, May G: Genome-level evolution of resistance genes in Arabidopsis thaliana. Genetics. 2003, 165: 309-319.
PubMed
PubMed Central
Google Scholar
Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Devos K, Graner A, Schulze-Lefert P: Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci U S A. 1998, 95: 370-375. 10.1073/pnas.95.1.370.
Article
PubMed
PubMed Central
Google Scholar
Michelmore RW, Meyers BC: Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 1998, 8: 1113-1130.
PubMed
Google Scholar
Akhunov ED, Akhunova AR, Linkiewicz AM, Dubcovsky J, Hummel D, Lazo G, Chao S, Anderson OD, David J, Qi L, Echalier B, Gill BS, Miftahudin , Gustafson JP, La Rota M, Sorrells ME, Zhang D, Nguyen HT, Kalavacharla V, Hossain K, Kianian SF, Peng J, Lapitan NL, Wennerlind EJ, Nduati V, Anderson JA, Sidhu D, Gill KS, McGuire PE, Qualset CO, Dvorak J: Synteny perturbations between wheat homoeologous chromosomes caused by locus duplications and deletions correlate with recombination rates. Proc Natl Acad Sci U S A. 2003, 100: 10836-10841. 10.1073/pnas.1934431100.
Article
PubMed
PubMed Central
Google Scholar
Chuang JH, Li H: Functional bias and spatial organization of genes in mutational hot and cold regions in the human genome. PLoS Biol. 2004, 2: E29-10.1371/journal.pbio.0020029.
Article
PubMed
PubMed Central
Google Scholar
Zhang L, Li W: Mammalian housekeeping genes evolve more slowly than tissue-specific genes. Mol Biol Evol. 2004, 21: 236-239. 10.1093/molbev/msh010.
Article
PubMed
Google Scholar
Lercher MJ, Urrutia AO, Hurst LD: Clustering of housekeeping genes provides a unified model of gene order in the human genome. Nat Genet. 2002, 31: 180-183. 10.1038/ng887.
Article
PubMed
Google Scholar
Hua-Van A, Daviere JM, Kaper F, Langin T, Daboussi MJ: Genome organization in Fusarium oxysporum: Clusters of class II transposons. Curr Genet. 2000, 37: 339-347. 10.1007/s002940050537.
Article
PubMed
Google Scholar
Zhang J, Peterson T: Genome rearrangements by nonlinear transposons in maize. Genetics. 1999, 153: 1403-1410.
PubMed
PubMed Central
Google Scholar
Zhang J, Peterson T: Transposition of reversed Ac element ends generates chromosome rearrangements in maize. Genetics. 2004, 167: 1929-1937. 10.1534/genetics.103.026229.
Article
PubMed
PubMed Central
Google Scholar
Graham MA, Marek LF, Shoemaker RC: Organization, expression and evolution of a disease resistance gene cluster in soybean. Genetics. 2002, 162: 1961-1977.
PubMed
PubMed Central
Google Scholar
Gandolfo MA, Nixon KC, Crepet WL: A new fossil flower from the turonian of new jersey – Dressiantha bicarpellata gen. et sp. nov. (capparales). American Journal of Botany. 1998, 85: 964-974.
Article
PubMed
Google Scholar
Simillion C, Vandepoele K, Saeys Y, Van de Peer Y: Building genomic profiles for uncovering segmental homology in the twilight zone. Genome Res. 2004, 14: 1095-1106. 10.1101/gr.2179004.
Article
PubMed
PubMed Central
Google Scholar
Royal Botanic Gardens, Kew: Plant DNA C-values Database (release 3.0, December 2004). [http://www.rbgkew.org.uk/cval/homepage.html].
Google Scholar
The Arabidopsis Genome Initiative: Analysis of the genome sequence of the flowering plant arabidopsis thaliana. Nature. 2000, 408: 796-815. 10.1038/35048692.
Article
Google Scholar
Kulikova O, Gualtieri G, Geurts R, Kim DJ, Cook D, Huguet T, de Jong JH, Fransz PF, Bisseling T: Integration of the FISH pachytene and genetic maps of medicago truncatula. Plant J. 2001, 27: 49-58. 10.1046/j.1365-313x.2001.01057.x.
Article
PubMed
Google Scholar
Blanc G, Wolfe KH: Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell. 2004, 16: 1667-1678. 10.1105/tpc.021345.
Article
PubMed
PubMed Central
Google Scholar
Schlueter JA, Dixon P, Granger C, Grant D, Clark L, Doyle JJ, Shoemaker RC: Mining EST databases to resolve evolutionary events in major crop species. Genome. 2004, 47: 868-876. 10.1139/g04-047.
Article
PubMed
Google Scholar
Koch MA, Haubold B, Mitchell-Olds T: Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol. 2000, 17: 1483-1498.
Article
PubMed
Google Scholar
Zhu H, Kim DJ, Baek JM, Choi HK, Ellis LC, Kuester H, McCombie WR, Peng HM, Cook DR: Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization. Plant Physiol. 2003, 131: 1018-1026. 10.1104/pp.102.016436.
Article
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410. 10.1006/jmbi.1990.9999.
Article
PubMed
Google Scholar
Salamov A, Solovyev V: Ab initio gene finding in drosophila genomic DNA. Genome Research. 2000, 10: 516-522. 10.1101/gr.10.4.516.
Article
PubMed
PubMed Central
Google Scholar
SoftBerry – fgenesh. [http://sun1.softberry.com/berry.phtml?topic=fgenesh&group=programs&subgroup=gfind].
Quackenbush J, Cho J, Lee D, Liang F, Holt I, Karamycheva S, Parvizi B, Pertea G, Sultana R, White J: The TIGR gene indices: Analysis of gene transcript sequences in highly sampled eukaryotic species. Nucleic Acids Res. 2001, 29: 159-164. 10.1093/nar/29.1.159.
Article
PubMed
PubMed Central
Google Scholar
Notredame C, Higgins DG, Heringa J: T-coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000, 302: 205-217. 10.1006/jmbi.2000.4042.
Article
PubMed
Google Scholar
Clamp M, Cuff J, Searle SM, Barton GJ: The Jalview java alignment editor. Bioinformatics. 2004, 20: 426-427. 10.1093/bioinformatics/btg430.
Article
PubMed
Google Scholar
Eddy SR: Profile hidden markov models. Bioinformatics. 1998, 14: 755-763. 10.1093/bioinformatics/14.9.755.
Article
PubMed
Google Scholar
Felsenstein J: PHYLIP (Phylogeny Inference Package) Version 3.6. Distributed by the Author. Seattle: Department of Genetics, University of Washington; 2000.
Google Scholar
Schmidt HA, Strimmer K, Vingron M, von Haeseler A: TREE-PUZZLE: Maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics. 2002, 18: 502-504. 10.1093/bioinformatics/18.3.502.
Article
PubMed
Google Scholar
Goldman N, Whelan S: Statistical tests of gamma-distributed rate heterogeneity in models of sequence evolution in phylogenetics. Mol Biol Evol. 2000, 17: 975-978.
Article
PubMed
Google Scholar
Korber B: Signature and sequence variation analysis. Computational Analysis of HIV Molecular Sequences. Edited by: Rodrigo AG, Learn GH. Dordrecht, Netherlands: Kluwer Academic Publishers; 200:55-72.
Google Scholar
HIV Sequence Database: SNAP Submission Form. [http://www.hiv.lanl.gov/content/hiv-db/SNAP/WEBSNAP/SNAP.html].
Nei M, Gojobori T: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986, 3: 418-426.
PubMed
Google Scholar
Ota T, Nei M: Variance and covariances of the numbers of synonymous and nonsynonymous substitutions per site. Mol Biol Evol. 1994, 11: 613-619.
PubMed
Google Scholar
Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB: A new integrated genetic linkage map of the soybean. Theor Appl Genet. 2004, 109: 122-128. 10.1007/s00122-004-1602-3.
Article
PubMed
Google Scholar