The Tomato Genome Consortium: The tomato genome sequence provides insights into fleshy fruit evolution. Nature Lett. 2012, 485: 635-641. 10.1038/nature11119.
Article
Google Scholar
Ranjan A, Ichihashi Y, Sinha NR: The tomato genome: implications for plant breeding, genomics and evolution. Genome Biol. 2012, 13: 16. 10.1186/gb-2012-13-3-r16.
Article
Google Scholar
Food and agriculture organization. http://faostat.fao.org.
Directorate Marketing: A profile of the South African tomato market value chain. Department - Agriculture, forestry and fisheries: Republic of South Africa; 2012.
Google Scholar
Rick CM: Tomato. Hybridization of crop plants. Edited by: Fehr WR, Hadley HH. Madison, USA: American Society of Agronomy-Crop Science Society of America;1980, 669-680.
Google Scholar
Willcox JK, Catignani GL, Lazarus S: Tomatoes and cardiovascular health. Crit Rev Food Sci Nutri. 2003, 43 (1): 1-18. 10.1080/10408690390826437.
Article
CAS
Google Scholar
Lukyanenko AN: Disease resistance in tomato. Genetic Improvement of Tomato. Edited by: Berlin KG. Germany: Springer; 1991, 99-119. Monographs on Theor Appl Genet, vol 14
Chapter
Google Scholar
Grube RC, Radwanski E, Jahn M: Comparative genetics of disease resistance within the Solanaceae. Genetics. 2000, 155: 873-88.
PubMed
CAS
PubMed Central
Google Scholar
Foolad MR, Panthee DR: Marker-assisted selection in tomato breeding. Crit Rev Plant Sci. 2012, 31 (2): 93-123. 10.1080/07352689.2011.616057.
Article
Google Scholar
Larry R, Joanne L: Genetic resources of tomato (Lycopersicon esculentum Mill.) and Wild Relatives. Genetic improvement of solanaceous crops, Volume 2-Tomato. Edited by: Razdan MK, Mattoo AK. New Hampshire, USA: Science Publishers; 2007, 25-75.
Google Scholar
Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B: Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet. 1997, 94 (2): 264-272. 10.1007/s001220050409.
Article
CAS
Google Scholar
Subramaniam G, Palchamy P, Robert P, Eguru R, Jaw-Fen W: Development of tomato SSR markers from anchored BAC clones of chromosome 12 and their application for genetic diversity analysis and linkage mapping. Euphytica. 2011, 178 (2): 283-295. 10.1007/s10681-010-0331-8.
Article
Google Scholar
Archak S, Lakshminarayanareddy V, Nagaraju J: High-throughput multiplex microsatellite marker assay for detection and quantification of adulteration in Basmati rice (Oryza sativa). Electrophoresis. 2007, 28: 2396-2405. 10.1002/elps.200600646.
Article
PubMed
CAS
Google Scholar
Sol genomics network. http://solgenomics.net/.
Frary A, Xu Y, Liu J, Mitchell S, Tedeschi E, Tanksley S: Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl Genet. 2005, 111: 291-312. 10.1007/s00122-005-2023-7.
Article
PubMed
CAS
Google Scholar
Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller J, Miller L, Paterson AH, Pineda O, Riider MS, Wing RA, Wu W, Young ND: High density molecular linkage maps of the tomato and potato genomes. Genetics. 1992, 132: 1141-1160.
PubMed
CAS
PubMed Central
Google Scholar
Solanum lycopersicum project. http://mips.helmholtz-muenchen.de/plant/tomato/index.jsp.
MicroSatellite analysis tool. http://pgrc.ipk-gatersleben.de/misa/.
Rozen S, Skaletsky HJ: Primer3 on the WWW for general users and for biologist programmers. Bioinformatics Methods and Protocols: Methods in Molecular Biology. Edited by: Krawetz S, Misener S. 2000, Totowa, NJ: Humana Press, 365-386.
Google Scholar
Sharma PC, Grover A, Kahl G: Mining microsatellites in eukaryotic genomes. Trends Biotechnol. 2007, 25 (11): 490-498. 10.1016/j.tibtech.2007.07.013.
Article
PubMed
CAS
Google Scholar
Kariin S, Burge C: Dinucleotide relative abundance extremes: a genomic signature. Trends Genet. 1995, 11 (7): 283-290. 10.1016/S0168-9525(00)89076-9.
Article
Google Scholar
Shioiri C, Takahata N: Skew of mononucleotide frequencies, relative abundance of dinucleotides and DNA strand asymmetry. J Mol Evol. 2001, 53: 364-376. 10.1007/s002390010226.
Article
PubMed
CAS
Google Scholar
Haseneyer G, Schmutzer T, Seidel M: From RNA-seq to large-scale genotyping-genomics resources for rye (Secale cereale L.). BMC Plant Biol. 2011, 11: 131-143. 10.1186/1471-2229-11-131.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zietkiewicz E, Rafalski A, Labuda D: Genome finger printing by simple sequence repeat (SSR) - anchored polymerase chain reaction amplification. Genomics. 1994, 20: 176-183. 10.1006/geno.1994.1151.
Article
PubMed
CAS
Google Scholar
Kim KS, Min MS, An JH, Lee H: Cross-species amplification of bovidae microsatellites and Low diversity of the endangered Korean goral. J Hered. 2004, 95 (6): 521-525. 10.1093/jhered/esh082.
Article
PubMed
CAS
Google Scholar
Park M, Jo SH, Kwon J, Park J, Ahn JH, Kim S, Lee YH, Yang TJ, Hur CG, Kang BC, Kim BD, Choi D: Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements. BMC Genomics. 2011, 12: 85-97. 10.1186/1471-2164-12-85.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sardaro MLS, Marmiroli M, Maestri E, Marmiroli N: Genetic characterization of Italian tomato varieties and their traceability in tomato food products. Food Sci Nutri. 2013, 1 (1): 54-62. 10.1002/fsn3.8.
Article
CAS
Google Scholar
Srivastava DK, Shoemaker LS, Franks CE, Sussman MD: Single laboratory validation of a microsatellite marker-based method in tomato variety identification. J AOAC Int. 2011, 94 (1): 251-258.
PubMed
CAS
Google Scholar
Viquez-Zamora M, Vosman B, van de Geest H, Bovy H, Visser RGF, Finkers R, van Heusden AW: Tomato breeding in the genomics era: insights from a SNP array. BMC Genomics. 2013, 14: 354. 10.1186/1471-2164-14-354.
Article
PubMed
CAS
PubMed Central
Google Scholar
Marmiroli N, Peano C, Maestri E: Advanced PCR techniques in identifying food components. Food authenticity and traceability. Edited by: Lees M. Cambridge UK: Woodhead Publishing; 2003, 3-33.
Chapter
Google Scholar
Marmiroli N, Maestri E, Pafundo S, Vietina M: Molecular traceability of olive oil: From plant genomics to food genomics. Advances in olive resources. Edited by: Berti L, Maury J. Trivandrum, India: Transworld Research Network; 2009, 157-172.
Google Scholar
Agrimonti C, Vietina M, Pafundo S, Marmiroli N: The use of food genomics to ensure the traceability of olive oil. Trends Food Sci Tech. 2011, 22: 237-244. 10.1016/j.tifs.2011.02.002.
Article
CAS
Google Scholar
Karakousis A, Barr AR, Chalmers KJ, Ablett GA, Holton TA, Henry RJ, Lim P, Langridge P: Potential of SSR markers for plant breeding and variety identification in Australian barley germplasm. Aust J of Agr Res. 2003, 54: 1197-1210. 10.1071/AR02178.
Article
CAS
Google Scholar
Kawchuk LM, Martin RF, Mcpherson J: Resistance in transgenic potato expressing the potato leafroll virus coat protein gene. Mol Plant Microbe In. 1990, 3: 301-307. 10.1094/MPMI-3-301.
Article
CAS
Google Scholar
Manigbas NL, Villegas LC: Microsatellite Markers in Hybridity tests to identify true hybrids of sugarcane. Philipp J Crop Sci. 2004, 29 (2): 23-32.
Google Scholar
Shirasawa K, Ishii K, Kim C, Ban T, Suzuki M, Ito T, Muranaka T, Kobayashi M, Nagata N, Isobe S, Tabata S: Development of Capsicum EST-SSR markers for species identification and in silico mapping onto the tomato genome sequence. Mol Breeding. 2013, 31 (1): 101-110. 10.1007/s11032-012-9774-z.
Article
CAS
Google Scholar
Stagel A, Portis E, Toppino L, Rotino GL, Lanteri S: Gene-based microsatellite development for mapping and phylogeny studies in eggplant. BMC Genomics. 2008, 9: 357-370. 10.1186/1471-2164-9-357.
Article
PubMed
PubMed Central
Google Scholar
McCouch SR, Chen X, Panaud O, Temnykh S, Xu Y, Cho YG, Huang N, Ishii T, Blair M: Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol. 1997, 35: 89-99. 10.1023/A:1005711431474.
Article
PubMed
CAS
Google Scholar
Becher SA, Steinmetz K, Weising K, Boury S, Peltier D, Renou JP, Kahl G, Wolff K: Microsatellites for variety identification in Pelargonium. Theor Appl Genet. 2000, 101: 643-651. 10.1007/s001220051526.
Article
CAS
Google Scholar
Wang Y, Bible P, Loganantharaj R, Upadhyaya HD: Identification of SSR markers associated with height using pool-based genome-wide association mapping in sorghum. Mol Breeding. 2012, 30 (1): 281-292. 10.1007/s11032-011-9617-3.
Article
Google Scholar
Babiker E, Ibrahim AMH, Yen Y, Stein J: Identification of a microsatellite marker associated with stem rust resistance gene Sr35 in wheat. Aust J Crop Sci. 2009, 3: 195-200.
CAS
Google Scholar
Liu S, Anderson JA: Marker assisted evaluation of fusarium head blight resistant wheat germplasm. Crop Sci. 2003, 43: 760-766. 10.2135/cropsci2003.0760.
Article
CAS
Google Scholar
Seyfarth R, Feuillet C, Schachermayr G, Winzeler M, Keller B: Development of a molecular marker for the adult plant leaf rust resistance gene Lr35 in wheat. Theor Appl Genet. 1999, 99 (3–4): 554-560.
Article
PubMed
CAS
Google Scholar
Singh R, Datta D, Priyamvada , Singh S, Tiwari R: Marker-assisted selection for leaf rust resistance genes Lr19 and Lr24 in wheat (Triticum aestivum L.). Appl Genet. 2004, 45 (4): 399-403.
Google Scholar
Kolmer JA, Anderson JA, Flor JM: Chromosome location, linkage with simple sequence repeat markers, and leaf rust resistance conditioned by gene in wheat. Crop Sci. 2010, 50: 2392-2395. 10.2135/cropsci2010.01.0005.
Article
Google Scholar
Thomson MJ, de Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL, Tumimbang-Raiz E, Blumwald E, Seraj ZI, Singh RK, Gregorio GB, Ismail AM: Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice. 2010, 3: 148-160. 10.1007/s12284-010-9053-8.
Article
Google Scholar
Morgante M, Olivieri AM: PCR-amplified microsatellites as markers in plant genetics. Plant J. 1993, 3: 175-182. 10.1111/j.1365-313X.1993.tb00020.x.
Article
PubMed
CAS
Google Scholar