Grant CA, Buckley WT, Bailey LD, Selles F: Cadmium accumulation in crops. Can J Plant Sci. 1998, 78: 1-17. 10.4141/P96-100.
Article
CAS
Google Scholar
McLaughlin MJ, Parker DR, Clarke JM: Metals and micronutrients - food safety issues. Field Crops Res. 1999, 60: 143-163. 10.1016/S0378-4290(98)00137-3.
Article
Google Scholar
Clemens S, Aarts MGM, Thomine S, Verbruggen N: Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci. 2013, 18: 92-99. 10.1016/j.tplants.2012.08.003.
Article
PubMed
CAS
Google Scholar
Li YM, Chaney RL, Schneiter AA, Miller JF, Elias EM, Hammond JJ: Screening for low grain cadmium phenotypes in sunflower, durum wheat and flax. Euphytica. 1997, 94: 23-30. 10.1023/A:1002996405463.
Article
CAS
Google Scholar
Clarke JM, Norvell WA, Clarke FR, Buckley WT: Concentration of cadmium and other elements in the grain of near-isogenic durum lines. Can J Plant Sci. 2002, 82: 27-33. 10.4141/P01-083.
Article
CAS
Google Scholar
Codex Alimentarius Commission: CODEX STAN 193–1995 (Rev. 4, 2009). General Standard for Contaminants and Toxins in Food and Feed.http://www.codexalimentarius.org/download/standards/17/CXS_193e.pdf,
Grant CA, Clarke JM, Duguid S, Chaney RL: Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ. 2008, 390: 301-310. 10.1016/j.scitotenv.2007.10.038.
Article
PubMed
CAS
Google Scholar
Archambault DJ, Marentes E, Buckley W, Clarke J, Taylor GJ: A rapid, seedling-based bioassay for identifying low cadmium-accumulating individuals of durum wheat (Triticum turgidum L.). Euphytica. 2001, 117: 175-182. 10.1023/A:1004037901460.
Article
CAS
Google Scholar
Knox RE, Pozniak CJ, Clarke FR, Clarke JM, Houshmand S, Singh AK: Chromosomal location of the cadmium uptake gene (Cdu1) in durum wheat. Genome. 2009, 52: 741-747. 10.1139/G09-042.
Article
PubMed
CAS
Google Scholar
Wiebe K, Harris NS, Faris JD, Clarke JM, Knox RE, Taylor GJ, Pozniak CJ: Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum). Theor Appl Genet. 2010, 121: 1047-1058. 10.1007/s00122-010-1370-1.
Article
PubMed
CAS
Google Scholar
Pozniak CJ, Clarke JM, Clarke FR: Potential for detection of marker-trait associations in durum wheat using unbalanced, historical phenotypic datasets. Mol Breed. 2012, 30: 1537-1550. 10.1007/s11032-012-9737-4.
Article
Google Scholar
Varshney RK, Graner A, Sorrells ME: Genomics-assisted breeding for crop improvement. Trends Plant Sci. 2005, 10: 621-630. 10.1016/j.tplants.2005.10.004.
Article
PubMed
CAS
Google Scholar
Jarvis SC, Jones LHP, Hopper MJ: Cadmium uptake from solution by plants and its transport from roots to shoots. Plant Soil. 1976, 44: 179-191. 10.1007/BF00016965.
Article
CAS
Google Scholar
Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S: Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot. 2009, 60: 2677-2688. 10.1093/jxb/erp119.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ueno D, Kono I, Yokosho K, Ando T, Yano M, Ma JF: A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytol. 2009, 182: 644-653. 10.1111/j.1469-8137.2009.02784.x.
Article
PubMed
CAS
Google Scholar
Ueno D, Koyama E, Kono I, Ando T, Yano M, Ma JF: Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. Plant Cell Physiol. 2009, 50: 2223-2233. 10.1093/pcp/pcp160.
Article
PubMed
CAS
Google Scholar
Tezuka K, Miyadate H, Katou K, Kodama I, Matsumoto S, Kawamoto T, Masaki S, Satoh H, Yamaguchi M, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H: A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku. Theor Appl Genet. 2010, 120: 1175-1182. 10.1007/s00122-009-1244-6.
Article
PubMed
CAS
Google Scholar
Stolt JP, Sneller FEC, Bryngelsson T, Lundborg T, Schat H: Phytochelatin and cadmium accumulation in wheat. Environ Exp Bot. 2003, 49: 21-28. 10.1016/S0098-8472(02)00045-X.
Article
CAS
Google Scholar
Harris NS, Taylor GJ: Cadmium uptake and translocation in seedlings of near isogenic lines of durum wheat that differ in grain cadmium accumulation. BMC Plant Biol. 2004, 4: 4-10.1186/1471-2229-4-4.
Article
PubMed
PubMed Central
Google Scholar
Greger M, Lofstedt M: Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat. Crop Sci. 2004, 44: 501-507.
Article
CAS
Google Scholar
Chan DY, Hale BA: Differential accumulation of Cd in durum wheat cultivars: uptake and retranslocation as sources of variation. J Exp Bot. 2004, 55: 2571-2579. 10.1093/jxb/erh255.
Article
PubMed
CAS
Google Scholar
Hart JJ, Welch RM, Norvell WA, Clarke JM, Kochian LV: Zinc effects on cadmium accumulation and partitioning in near-isogenic lines of durum wheat that differ in grain cadmium concentration. New Phytol. 2005, 167: 391-401. 10.1111/j.1469-8137.2005.01416.x.
Article
PubMed
CAS
Google Scholar
Hart JJ, Welch RM, Norvell WA, Kochian LV: Characterization of cadmium uptake, translocation and storage in near-isogenic lines of durum wheat that differ in grain cadmium concentration. New Phytol. 2006, 172: 261-271. 10.1111/j.1469-8137.2006.01832.x.
Article
PubMed
CAS
Google Scholar
Adeniji BA, Budimir-Hussey MT, Macfie SM: Production of organic acids and adsorption of Cd on roots of durum wheat (Triticum turgidum L. var. durum). Acta Physiol Plant. 2010, 32: 1063-1072. 10.1007/s11738-010-0498-6.
Article
CAS
Google Scholar
Greger M, Landberg T: Role of rhizosphere mechanisms in Cd uptake by various wheat cultivars. Plant Soil. 2008, 312: 195-205. 10.1007/s11104-008-9725-y.
Article
CAS
Google Scholar
Stolt P, Asp H, Hultin S: Genetic variation in wheat cadmium accumulation on soils with different cadmium concentrations. J Agron Crop Sci. 2006, 192: 201-208. 10.1111/j.1439-037X.2006.00202.x.
Article
CAS
Google Scholar
Yoneyama T, Gosho T, Kato M, Goto S, Hayashi H: Xylem and phloem transport of Cd, Zn and Fe into the grains of rice plants (Oryza sativa L.) grown in continuously flooded Cd-contaminated soil. Soil Sci Plant Nutr. 2010, 56: 445-453. 10.1111/j.1747-0765.2010.00481.x.
Article
CAS
Google Scholar
Liu J, Qian M, Cai G, Yang J, Zhu Q: Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. J Hazard Mater. 2007, 143: 443-447. 10.1016/j.jhazmat.2006.09.057.
Article
PubMed
CAS
Google Scholar
Kashiwagi T, Shindoh K, Hirotsu N, Ishimaru K: Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice. BMC Plant Biol. 2009, 9: 8-10.1186/1471-2229-9-8.
Article
PubMed
PubMed Central
Google Scholar
Rodda MS, Li G, Reid RJ: The timing of grain Cd accumulation in rice plants: the relative importance of remobilisation within the plant and root Cd uptake post-flowering. Plant Soil. 2011, 347: 105-114. 10.1007/s11104-011-0829-4.
Article
CAS
Google Scholar
Parker DR, Norvell WA: Advances in solution culture methods for plant mineral nutrition research. Adv Agron. 1999, 65: 151-213.
Article
CAS
Google Scholar
Clarke JM, Clarke FR, Pozniak CJ: Forty-six years of genetic improvement in Canadian durum wheat cultivars. Can J Plant Sci. 2010, 90: 791-801. 10.4141/cjps10091.
Article
Google Scholar
Uraguchi S, Fujiwara T: Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice. 2012, 5: 5-10.1186/1939-8433-5-5.
Article
PubMed
PubMed Central
Google Scholar
Pearson JN, Rengel Z: Distribution and remobilization of Zn and Mn during grain development in wheat. J Exp Bot. 1994, 45: 1829-1835. 10.1093/jxb/45.12.1829.
Article
CAS
Google Scholar
Riesen O, Feller U: Redistribution of nickel, cobalt, manganese, zinc, and cadmium via the phloem in young and maturing wheat. J Plant Nutr. 2005, 28: 421-430. 10.1081/PLN-200049153.
Article
CAS
Google Scholar
Page V, Feller U: Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Ann Bot. 2005, 96: 425-434. 10.1093/aob/mci189.
Article
PubMed
CAS
PubMed Central
Google Scholar
Harris NS, Taylor GJ: Remobilization of cadmium in maturing shoots of near isogenic lines of durum wheat that differ in grain cadmium accumulation. J Exp Bot. 2001, 52: 1473-1481. 10.1093/jexbot/52.360.1473.
Article
PubMed
CAS
Google Scholar
Herren T, Feller U: Transport of cadmium via xylem and phloem in maturing wheat shoots: comparison with the translocation of zinc, strontium and rubidium. Ann Bot. 1997, 80: 623-628. 10.1006/anbo.1997.0492.
Article
CAS
Google Scholar
Cakmak I, Welch RM, Hart J, Norvell WA, Oztürk L, Kochian LV: Uptake and retranslocation of leaf-applied cadmium (109Cd) in diploid, tetraploid and hexaploid wheats. J Exp Bot. 2000, 51: 221-226. 10.1093/jexbot/51.343.221.
Article
PubMed
CAS
Google Scholar
Cakmak I, Welch RM, Erenoglu B, Römheld V, Norvell WA, Kochian LV: Influence of varied zinc supply on re-translocation of cadmium (109Cd) and rubidium (86Rb) applied on mature leaf of durum wheat seedlings. Plant Soil. 2000, 219: 279-284. 10.1023/A:1004777631452.
Article
CAS
Google Scholar
Tanaka K, Fujimaki S, Fujiwara T, Yoneyama T, Hayashi H: Cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.) treated with a nutrient solution containing cadmium. Soil Sci Plant Nutr. 2003, 49: 311-313. 10.1080/00380768.2003.10410014.
Article
CAS
Google Scholar
Tanaka K, Fujimaki S, Fujiwara T, Yoneyama T, Hayashi H: Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.). Soil Sci Plant Nutr. 2007, 53: 72-77. 10.1111/j.1747-0765.2007.00116.x.
Article
CAS
Google Scholar
Page V, Bayon RCL, Feller U: Partitioning of zinc, cadmium, manganese and cobalt in wheat (Triticum aestivum) and lupin (Lupinus albus) and further release into the soil. Environ Exp Bot. 2006, 58: 269-278. 10.1016/j.envexpbot.2005.09.005.
Article
CAS
Google Scholar
O'Brien TP, Sammut ME, Lee JW, Smart MG: The vascular system of the wheat spikelet. Aust J Plant Physiol. 1985, 12: 487-511. 10.1071/PP9850487.
Article
Google Scholar
Fujimaki S, Suzui N, Ishioka NS, Kawachi N, Ito S, Chino M, Nakamura S: Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant. Plant Physiol. 2010, 152: 1796-1806. 10.1104/pp.109.151035.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ishikawa S, Suzui N, Ito-Tanabata S, Ishii S, Igura M, Abe T, Kuramata M, Kawachi N, Fujimaki S: Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting 107Cd tracer. BMC Plant Biol. 2011, 11: 172-10.1186/1471-2229-11-172.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yamaguchi N, Ishikawa S, Abe T, Baba K, Arao T, Terada Y: Role of the node in controlling traffic of cadmium, zinc, and manganese in rice. J Exp Bot. 2012, 63: 2729-2737. 10.1093/jxb/err455.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kobayashi NI, Tanoi K, Hirose A, Nakanishi TM: Characterization of rapid intervascular transport of cadmium in rice stem by radioisotope imaging. J Exp Bot. 2013, 64: 507-517. 10.1093/jxb/ers344.
Article
PubMed
CAS
PubMed Central
Google Scholar
Salt DE, Prince RC, Pickering IJ, Raskin I: Mechanisms of cadmium mobility and accumulation in indian mustard. Plant Physiol. 1995, 109: 1427-1433.
PubMed
CAS
PubMed Central
Google Scholar
Florijn PJ, Van Beusichem ML: Uptake and distribution of cadmium in maize inbred lines. Plant Soil. 1993, 150: 25-32. 10.1007/BF00779172.
Article
CAS
Google Scholar
Van der Vliet L, Peterson C, Hale B: Cd accumulation in roots and shoots of durum wheat: the roles of transpiration rate and apoplastic bypass. J Exp Bot. 2007, 58: 2939-2947. 10.1093/jxb/erm119.
Article
PubMed
CAS
Google Scholar
Quinn CJ, Mohammad A, Macfie SM: Accumulation of cadmium in near-isogenic lines of durum wheat (Triticum turgidum L. var durum): the role of transpiration. Physiol Mol Biol Plants. 2011, 17: 317-325. 10.1007/s12298-011-0086-2.
Article
PubMed
CAS
PubMed Central
Google Scholar
Clarke JM, Leisle D, Kopytko GL: Inheritance of cadmium concentration in five durum wheat crosses. Crop Sci. 1997, 37: 1722-1726. 10.2135/cropsci1997.0011183X003700060008x.
Article
Google Scholar
Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF: Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA. 2010, 107: 16500-16505. 10.1073/pnas.1005396107.
Article
PubMed
CAS
PubMed Central
Google Scholar
Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H: OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol. 2010, 189: 190-199.
Article
PubMed
Google Scholar
Ueno D, Koyama E, Yamaji N, Ma JF: Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan. J Exp Bot. 2011, 62: 2265-2272. 10.1093/jxb/erq383.
Article
PubMed
CAS
Google Scholar
Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P: AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol. 2009, 149: 894-904.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chao DY, Silva A, Baxter I, Huang YS, Nordborg M, Danku J, Lahner B, Yakubova E, Salt DE: Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana. PLoS Genet. 2012, 8: e1002923-10.1371/journal.pgen.1002923.
Article
PubMed
CAS
PubMed Central
Google Scholar
Clarke JM, Leisle D, DePauw RM, Thiessen LL: Registration of five pairs of durum wheat genetic stocks near-isogenic for cadmium concentration. Crop Sci. 1997, 37: 297-10.2135/cropsci1997.0011183X003700010071x.
Article
Google Scholar
Parker DR, Norvell WA, Chaney RL: GEOCHEM-PC: a chemical speciation program for IBM and compatible personal computers. Chemical Equilibrium and Reaction Models SSSA Spec Publ 42. Edited by: Loeppert RH, Schwab AP, Goldberg S. Madison: Soil Science Society of America:1995, 253-269.
Google Scholar
Oscarson P: The strategy of the wheat plant in acclimating growth and grain production to nitrogen availability. J Exp Bot. 2000, 51: 1921-1929. 10.1093/jexbot/51.352.1921.
Article
PubMed
CAS
Google Scholar
Kukier U, Chaney RL: Growing rice grain with controlled cadmium concentrations. J Plant Nutr. 2002, 25: 1793-1820. 10.1081/PLN-120006058.
Article
CAS
Google Scholar