Chisholm ST, Coaker G, Day B, Staskawicz BJ: Host-Microbe Interactions: Shaping the Evolution of the Plant Immune Response. Cell. 2006, 124: 803-814. 10.1016/j.cell.2006.02.008.
Article
PubMed
CAS
Google Scholar
Jones-Rhoades MW, Bartel DP, Bartel B: MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol. 2006, 57: 19-53. 10.1146/annurev.arplant.57.032905.105218.
Article
PubMed
CAS
Google Scholar
Mateos JL, Bologna NG, Palatnik JF: Biogenesis of Plant MicroRNAs. Non Coding RNAs in Plants RNA technologies. Edited by: Erdmann and Barciszewski. Berlin: Springer; 2011:251-268.
Chapter
Google Scholar
German MA, Pillay M, Jeong DH, et al: Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol. 2008, 26: 941-946. 10.1038/nbt1417.
Article
PubMed
CAS
Google Scholar
Xie Z, Khanna K, Ruan S: Expression of microRNAs and its regulation in plants. Seminars in Cell and Developmental Biology. 2010, 21 (8): 790-7. 10.1016/j.semcdb.2010.03.012.
Article
PubMed
CAS
PubMed Central
Google Scholar
Megraw M, Hatzigeorgiou AG: MicroRNA promoter analysis. Methods Mol Biol. 2010, 592: 149-161. 10.1007/978-1-60327-005-2_11.
Article
PubMed
CAS
Google Scholar
Meng Y, Huang F, Shi Q, et al: Genome-wide survey of rice microRNAs and microRNA-target pairs in the root of a novel auxin-resistant mutant. Planta. 2009, 230: 883-898. 10.1007/s00425-009-0994-3.
Article
PubMed
CAS
Google Scholar
Kong WW, Yang ZM: Identification of iron-deficiency responsive microRNA genes and cis-elements in Arabidopsis. Plant Physiol Biochem. 2010, 48: 153-159. 10.1016/j.plaphy.2009.12.008.
Article
PubMed
CAS
Google Scholar
Cui X, Xu SM, Mu DS, Yang ZM: Genomic analysis of rice microRNA promoters and clusters. Gene. 2009, 431: 61-66. 10.1016/j.gene.2008.11.016.
Article
PubMed
CAS
Google Scholar
Shukla LI, Chinnusamy V, Sunkar R: The role of microRNAs and other endogenous small RNAs in plant stress responses. BBA - Gene Regulatory Mechanisms. 2008, 1779: 743-748.
PubMed
CAS
Google Scholar
Navarro L, Dunoyer P, Jay F, et al: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science. 2006, 312: 436-439. 10.1126/science.1126088.
Article
PubMed
CAS
Google Scholar
Navarro L, Jay F, Nomura K, He SY, Voinnet O: Suppression of the microRNA pathway by bacterial effector proteins. Science. 2008, 321: 964-967. 10.1126/science.1159505.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhang W, Gao S, Zhou X, et al: Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol. 2010, 75: 93-105.
Article
PubMed
PubMed Central
Google Scholar
Li Y, Zhang QQ, Zhang J, et al: Identification of MicroRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol. 2010, 152: 2222-10.1104/pp.109.151803.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fahlgren N, Howell MD, Kasschau KD, et al: High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One. 2007, 2: e219-10.1371/journal.pone.0000219.
Article
PubMed
PubMed Central
Google Scholar
El-Sharkawy MA: Cassava biology and physiology. Plant Mol Biol. 2004, 56: 481-501. 10.1007/s11103-005-2270-7.
Article
PubMed
CAS
Google Scholar
Ziska LH, Runion GB, Tomecek M, et al: An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass Bioenergy. 2009, 33: 1503-1508. 10.1016/j.biombioe.2009.07.014.
Article
CAS
Google Scholar
Blagbrough IS, Bayoumi SAL, Rowan MG, Beeching JR: Cassava: an appraisal of its phytochemistry and its biotechnological prospects. Phytochemistry. 2010, 71: 1940-1951. 10.1016/j.phytochem.2010.09.001.
Article
PubMed
CAS
Google Scholar
Verdier V: Bacteriosis vascular (o añublo bacteriano) de la yuca causada por Xanthomonas axonopodis pv. manihotis. En CIAT eds La yuca en el Tercer Milenio Sistemas modernos de producción procesamiento utilización y comercialización. 2002, 148-159.
Google Scholar
Gregory PJ, Ingram JSI, Brklacich M: Climate change and food security. Philosophical transactions of the royal society of London-series B. Biological Sciences. 2005, 360: 2139-2148. 10.1098/rstb.2005.1745.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mhuantong W, Wichadakul D: MicroPC (microPC): a comprehensive resource for predicting and comparing plant microRNAs. BMC Genomics. 2009, 10: 366-10.1186/1471-2164-10-366.
Article
PubMed
PubMed Central
Google Scholar
Zhang Z, Yu J, Li D, et al: PMRD: plant microRNA database. Nucleic Acids Res. 2010, 38: D806-D813. 10.1093/nar/gkp818.
Article
PubMed
CAS
PubMed Central
Google Scholar
Amiteye S, Corral JM, Sharbel TF: Overview of the potential of microRNAs and their target gene detection for cassava (Manihot esculenta) improvement. J Biotechnol. 2011, 10: 2562-2573.
CAS
Google Scholar
Zeng C, Wang W, Zheng Y, et al: Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants. Database. 2009, 38: 981-995.
Google Scholar
Griffiths-Jones S: miRBase: microRNA sequences and annotation. Wiley Online Library. 2010, Unit 12.9. 1-10. Chapter 12
Google Scholar
Cassava Genome Project 2010: Cassava Genome Project. 2010, [http://www.phytozome.net/cassava].
Google Scholar
Zhang Z, Yu J, Li D, et al: PMRD: plant microRNA database. Nucleic Acids Res. 2010, 38: D806-D813. 10.1093/nar/gkp818.
Article
PubMed
CAS
PubMed Central
Google Scholar
Moxon S, Schwach F, Dalmay T, et al: A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics. 2008, 24: 2252-2253. 10.1093/bioinformatics/btn428.
Article
PubMed
CAS
Google Scholar
Jones-Rhoades MW, Bartel DP: Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell. 2004, 14: 787-799. 10.1016/j.molcel.2004.05.027.
Article
PubMed
CAS
Google Scholar
Jiang P, Wu H, Wang W, et al: MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res. 2007, 35: W339-W344. 10.1093/nar/gkm368.
Article
PubMed
PubMed Central
Google Scholar
Chen X, Li Q, Wang J, et al: Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biol. 2009, 10: R78-10.1186/gb-2009-10-7-r78.
Article
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410.
Article
PubMed
CAS
Google Scholar
Enright AJ, John B, Gaul U, et al: MicroRNA targets in Drosophila. Genome Biol. 2003, 5: R1-10.1186/gb-2003-5-1-r1.
Article
PubMed
PubMed Central
Google Scholar
Abdel-Ghany SE, Pilon M: MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem. 2008, 283: 15932-15945. 10.1074/jbc.M801406200.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cuperus JT, Fahlgren N, Carrington JC: Evolution and Functional Diversification of MIRNA Genes. the Plant Cell Online. 2011, 23: 431-442. 10.1105/tpc.110.082784.
Article
CAS
Google Scholar
Kessler SA, Shimosato-Asano H, Keinath NF, et al: Conserved Molecular Components for Pollen Tube Reception and Fungal Invasion. Science. 2010, 330: 968-971. 10.1126/science.1195211.
Article
PubMed
CAS
Google Scholar
Escobar-Restrepo J-M, Huck N, Kessler S, et al: The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science. 2007, 317: 656-660. 10.1126/science.1143562.
Article
PubMed
CAS
Google Scholar
Meyers BC, Axtell MJ, Bartel B, et al: Criteria for annotation of plant MicroRNAs. Plant Cell. 2008, 20: 3186-3190. 10.1105/tpc.108.064311.
Article
PubMed
CAS
PubMed Central
Google Scholar
Luo QJ, Samanta MP, Köksal F, et al: Evidence for antisense transcription associated with microRNA target mRNAs in Arabidopsis. PLoS Genet. 2009, 5: e1000457-10.1371/journal.pgen.1000457.
Article
PubMed
PubMed Central
Google Scholar
Megraw M, Baev V, Rusinov V, et al: MicroRNA promoter element discovery in Arabidopsis. RNA. 2006, 12 (9): 1612-1619. 10.1261/rna.130506.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ruiz-Ferrer V, Voinnet O: Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol. 2009, 60: 485-510. 10.1146/annurev.arplant.043008.092111.
Article
PubMed
CAS
Google Scholar
Katiyar-Agarwal S, Jin H: Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol. 2010, 48: 225-10.1146/annurev-phyto-073009-114457.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fu J, Liu H, Li Y, et al: Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol. 2011, 155: 589-602. 10.1104/pp.110.163774.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ding X, Cao Y, Huang L, et al: Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell. 2008, 20: 228-240. 10.1105/tpc.107.055657.
Article
PubMed
CAS
PubMed Central
Google Scholar
Griffiths-Jones S, Saini HK, Van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008, 36: D154-D158. 10.1093/nar/gkn221.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu H, Tian X, Li Y, Wu C: Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA. 2008, 14: 836-843. 10.1261/rna.895308.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sunkar R, Zhu J: Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Sci STKE. 2004, 16: 2001-2019.
CAS
Google Scholar
Borkow G, Gabbay J: Putting copper into action: copper-impregnated products with potent biocidal activities. The FASEB journal official publication of the Federation of American Societies for Experimental Biology. 2004, 18: 1728-1730.
PubMed
CAS
Google Scholar
Yuan M, Chu Z, Li X, Xu C, Wang S: The Bacterial Pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell. 2010, 22: 1-14. 10.1105/tpc.109.220110.
Article
Google Scholar
Axtell MJ, Jan C, Rajagopalan R, Bartel DP: A two-hit trigger for siRNA biogenesis in plants. Cell. 2006, 127: 565-577. 10.1016/j.cell.2006.09.032.
Article
PubMed
CAS
Google Scholar
Howell MD, Fahlgren N, Chapman EJ, et al: Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting[W][OA]. Plant Cell. 2007, 19: 926-942. 10.1105/tpc.107.050062.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ronemus M, Vaughn MW, Martienssen RA: MicroRNA-targeted and small interfering RNA-mediated mRNA degradation is regulated by argonaute, dicer, and RNA-dependent RNA polymerase in Arabidopsis. Plant Cell. 2006, 18: 1559-1574. 10.1105/tpc.106.042127.
Article
PubMed
CAS
PubMed Central
Google Scholar
Khraiwesh B, Arif MA, Seumel GI, et al: Transcriptional control of gene expression by microRNAs. Cell. 2010, 140: 111-122. 10.1016/j.cell.2009.12.023.
Article
PubMed
CAS
Google Scholar
Rice P, Longden I, Bleasby A: EMBOSS: the European molecular biology open software suite. Trends Genet. 2000, 16: 276-277. 10.1016/S0168-9525(00)02024-2.
Article
PubMed
CAS
Google Scholar
Gardner PP, Daub J, Tate JG, et al: Rfam: updates to the RNA families database. Nucleic Acids Res. 2009, 37: D136-D140. 10.1093/nar/gkn766.
Article
PubMed
CAS
PubMed Central
Google Scholar
Altschul SF, Madden TL, Schaffer AA, et al: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hofacker IL, Fontana W, Stadler PF, et al: Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie Chemical Monthly. 1994, 125: 167-188. 10.1007/BF00818163.
Article
CAS
Google Scholar
Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31: 3406-3415. 10.1093/nar/gkg595.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ambros V, Bartel B, Bartel DP, et al: A uniform system for microRNA annotation. RNA. 2003, 9: 277-10.1261/rna.2183803.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jiang M, Anderson J, Gillespie J, Mayne M: uShuffle: a useful tool for shuffling biological sequences while preserving the k-let counts. BMC Bioinforma. 2008, 9: 192-10.1186/1471-2105-9-192.
Article
Google Scholar
Freyhult E, Gardner PP, Moulton V: A comparison of RNA folding measures. BMC Bioinforma. 2005, 6: 241-10.1186/1471-2105-6-241.
Article
Google Scholar
Pérez-Quintero AL, Neme R, Zapata A, López C: Plant microRNAs and their role in defense against viruses: a bioinformatics approach. BMC Plant Biol. 2010, 10: 138-10.1186/1471-2229-10-138.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y: miRU: an automated plant miRNA target prediction server. Gene. 2005, 33: 701-704.
Google Scholar