Wahid A, Gelani S, Ashraf M, Foolad MR: Heat tolerance in plants: An overview. Environmental and Experimental Botany. 2007, 61: 199-223. 10.1016/j.envexpbot.2007.05.011.
Article
Google Scholar
Vivier MA, Pretorius IS: Genetically tailored grapevines for the wine industry. Trends Biotechnol. 2002, 20: 472-478. 10.1016/S0167-7799(02)02058-9.
Article
PubMed
CAS
Google Scholar
Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K: Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol. 2011, 11: 163. 10.1186/1471-2229-11-163.
Article
PubMed
PubMed Central
Google Scholar
Schultz HR: Abiotic stress ecophysiology and grape functional genomics. Climate change and world viticulture. Cost Action 858 Workshop: Vineyard under environmental constraints: adaptations to climate change. 2007, Poland: University of Lodz.
Google Scholar
Kriedemann PE: Photosynthesis in vine leaves as a function of light intensity, temperature, and leaf age. Vitis. 1986, 7: 213-220.
Google Scholar
Howell GS: Sustainable grape productivity and the growth-yield relationship: A review. Am J Enology and Viticulture. 2001, 52: 165-174.
Google Scholar
van Leeuwen C, Friant P, Chone X, Tregoat O, Koundouras S, Dubourdieu D: Influence of climate, soil, and cultivar on terroir. Am J Enology and Viticulture. 2004, 55: 207-217.
Google Scholar
Sepu´lveda G, Kliewer WM: Stomatal response of three grapevine cultivars (Vitis vinifera L.) to high temperature. Am J Enol Vitic. 1986, 37: 44-52..
Google Scholar
Caprio JM, Quamme HA: Weather conditions associated with grape production in the Okanagan Valley of British Columbia and potential impact of climate change. Can J Plant Sci. 2002, 82: 755-763. 10.4141/P01-160.
Article
Google Scholar
Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K: Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot. 2007, 58: 1935-1945. 10.1093/jxb/erm055.
Article
PubMed
CAS
Google Scholar
Wang LJ, Li SH: Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci. 2006, 170: 685-694. 10.1016/j.plantsci.2005.09.005.
Article
CAS
Google Scholar
Wang LJ, SH L: Heat acclimation induced acquired heat tolerance and cross adaptation in different grape cultivars: Relationships to photosynthetic energy partitioning. Functional Plant Biology. 2009, 36: 516-526. 10.1071/FP09008.
Article
CAS
Google Scholar
Luo HB, Ma L, Xi HF, Duan W, Li SH, Loescher W, Wang JF, Wang LJ: Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves. PLoS One. 2011, 6: e23033. 10.1371/journal.pone.0023033.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, et al: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007, 449: 463-467. 10.1038/nature06148.
Article
PubMed
CAS
Google Scholar
Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J, et al: A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One. 2007, 2: e1326. 10.1371/journal.pone.0001326.
Article
PubMed
PubMed Central
Google Scholar
Cramer GR: Abiotic stress and plant responses from the whole vine to the genes. Australian J Grape and Wine Res. 2010, 16: 86-93.
Article
CAS
Google Scholar
Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR: Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics. 2007, 8: 429. 10.1186/1471-2164-8-429.
Article
PubMed
PubMed Central
Google Scholar
Deluc LG, Decendit A, Papastamoulis Y, Merillon JM, Cushman JC, Cramer GR: Water deficit increases stilbene metabolism in Cabernet Sauvignon berries. J Agric Food Chem. 2011, 59: 289-297. 10.1021/jf1024888.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, et al: Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics. 2007, 7: 111-134. 10.1007/s10142-006-0039-y.
Article
PubMed
CAS
Google Scholar
Grimplet J, Deluc LG, Tillett RL, Wheatley MD, Schlauch KA, Cramer GR, Cushman JC: Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genomics. 2007, 8: 187. 10.1186/1471-2164-8-187.
Article
PubMed
PubMed Central
Google Scholar
Mathiason K, He D, Grimplet J, Venkateswari J, Galbraith DW, Or E, Fennell A: Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break. Funct Integr Genomics. 2009, 9: 81-96. 10.1007/s10142-008-0090-y.
Article
PubMed
CAS
Google Scholar
Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL: Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry. 2009, 70: 1329-1344. 10.1016/j.phytochem.2009.08.006.
Article
PubMed
CAS
Google Scholar
Tattersall EAR, Grimplet J, DeLuc L, Wheatley MD, Vincent D, Osborne C, Ergul A, Lomen E, Blank RR, Schlauch KA, et al: Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress. Funct Integr Genomics. 2007, 7: 317-333. 10.1007/s10142-007-0051-x.
Article
PubMed
CAS
Google Scholar
Tillett RL, Wheatley MD, Tattersall EAR, Schlauch KA, Cramer GR, Cushman JC: The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape. Plant Biotechnol J. 2012, 10: 105-124. 10.1111/j.1467-7652.2011.00648.x.
Article
PubMed
CAS
PubMed Central
Google Scholar
Waters DLE, Holton TA, Ableff EM, Lee LS, Henry RJ: cDNA microarray analysis of developing grape (Vitis vinifera cv. Shiraz) berry skin. Funct Integr Genomics. 2005, 5: 40-58. 10.1007/s10142-004-0124-z.
Article
PubMed
CAS
Google Scholar
Waters DLE, Holton TA, Ablett EM, Lee LS, Henry RJ: The ripening wine grape berry skin transcriptome. Plant Sci. 2006, 171: 132-138. 10.1016/j.plantsci.2006.03.002.
Article
CAS
Google Scholar
Zamboni A, Di Carli M, Guzzo F, Stocchero M, Zenoni S, Ferrarini A, Tononi P, Toffali K, Desiderio A, Lilley KS, et al: Identification of putative stage-specific grapevine berry biomarkers and omics data integration into networks. Plant Physiol. 2010, 154: 1439-1459. 10.1104/pp.110.160275.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zenoni S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, Bellin D, Pezzotti M, Delledonne M: Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol. 2010, 152: 1787-1795. 10.1104/pp.109.149716.
Article
PubMed
CAS
PubMed Central
Google Scholar
Perrone I, Pagliarani C, Lovisolo C, Chitarra W, Roman F, Schubert A: Recovery from water stress affects grape leaf petiole transcriptome. Planta. 2012, 235 (6): 1383-1396. 10.1007/s00425-011-1581-y.
Article
PubMed
CAS
Google Scholar
Lim CJ, Yang KA, Hong JK, Choi AS, Yun DJ, Hong JC, Chung WS, Lee SY, Cho MJ, Lim CO: Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. J Plant Res. 2006, 119: 373-383. 10.1007/s10265-006-0285-z.
Article
PubMed
CAS
Google Scholar
Yamakawa H, Hirose T, Kuroda M, Yamaguchi T: Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol. 2007, 144: 258-277. 10.1104/pp.107.098665.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hewezi T, Leger M, Gentzbittel L: A comprehensive analysis of the combined effects of high light and high temperature stresses on gene expression in sunflower. Ann Bot. 2008, 102: 127-140. 10.1093/aob/mcn071.
Article
PubMed
CAS
PubMed Central
Google Scholar
Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N: Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot. 2009, 60: 3891-3908. 10.1093/jxb/erp234.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wei K, Cheng F, Dong H, Zhang Q, Liu K, Cao Z: Microarray analysis of gene expression profile related to grain storage metabolism in rice endosperms as affected by high temperature at filling stage. Scientia Agricultura Sinica. 2010, 43: 1-11.
CAS
Google Scholar
Galmes J, Medrano H, Flexas J: Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol. 2007, 175: 81-93. 10.1111/j.1469-8137.2007.02087.x.
Article
PubMed
CAS
Google Scholar
Vinocur B, Altman A: Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol. 2005, 16: 123-132. 10.1016/j.copbio.2005.02.001.
Article
PubMed
CAS
Google Scholar
Gu RS, Fonseca S, Puskas LG, Hackler L, Zvara A, Dudits D, Pais MS: Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiol. 2004, 24: 265-276. 10.1093/treephys/24.3.265.
Article
PubMed
CAS
Google Scholar
Bita CE, Zenoni S, Vriezen WH, Mariani C, Pezzotti M, Gerats T: Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants. BMC Genomics. 2011, 12: 384. 10.1186/1471-2164-12-384.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chauhan H, Khurana N, Agarwal P, Khurana P: Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress. Mol Genet Genomics. 2011, 286: 171-187. 10.1007/s00438-011-0638-8.
Article
PubMed
CAS
Google Scholar
Ginzberg I, Barel G, Ophir R, Tzin E, Tanami Z, Muddarangappa T, de Jong W, Fogelman E: Transcriptomic profiling of heat-stress response in potato periderm. J Exp Bot. 2009, 60: 4411-4421. 10.1093/jxb/erp281.
Article
PubMed
CAS
Google Scholar
Mangelsen E, Kilian J, Harter K, Jansson C, Wanke D, Sundberg E: Transcriptome analysis of high-temperature stress in developing barley caryopses: early stress responses and effects on storage compound biosynthesis. Mol Plant. 2011, 4: 97-115. 10.1093/mp/ssq058.
Article
PubMed
CAS
Google Scholar
Huang B, Xu C: Identification and characterization of proteins associated with plant tolerance to heat stress. J Integr Plant Biol. 2008, 50: 1230-1237. 10.1111/j.1744-7909.2008.00735.x.
Article
PubMed
CAS
Google Scholar
Didomenico BJ, Bugaisky GE, Lindquist S: Heat -shock and recovery are mediated by different translational mechanisms. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences. 1982, 79: 6181-6185. 10.1073/pnas.79.20.6181.
Article
CAS
Google Scholar
Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng J-S, Luo HB, Li SH: Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol. 2010, 10: 34. 10.1186/1471-2229-10-34.
Article
PubMed
PubMed Central
Google Scholar
Wang W, Vinocur B, Shoseyov O, Altman A: Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004, 9: 244-252. 10.1016/j.tplants.2004.03.006.
Article
PubMed
CAS
Google Scholar
Heckathorn SA, Downs CA, Sharkey TD, Coleman JS: The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Plant Physiol. 1998, 116: 439-444. 10.1104/pp.116.1.439.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sanmiya K, Suzuki K, Egawa Y, Shono M: Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett. 2004, 557: 265-268. 10.1016/S0014-5793(03)01494-7.
Article
PubMed
CAS
Google Scholar
Myouga F, Motohashi R, Kuromori T, Nagata N, Shinozaki K: An Arabidopsis chloroplast-targeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat-stress response. Plant J. 2006, 48: 249-260. 10.1111/j.1365-313X.2006.02873.x.
Article
PubMed
CAS
Google Scholar
Lee U, Wie C, Escobar M, Williams B, Hong SW, Vierling E: Genetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the small heat shock protein chaperone system. Plant Cell. 2005, 17: 559-571. 10.1105/tpc.104.027540.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pressman E, Shaked R, Firon N: Tomato response to heat stress: focus on pollen grains. Plant Stress. 2007, 1: 216-227.
Google Scholar
Hartl FU: Molecular chaperones in cellular protein folding. Nature. 1996, 381: 571-580. 10.1038/381571a0.
Article
PubMed
CAS
Google Scholar
Shi WM, Muramoto Y, Ueda A, Takabe T: Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene. 2001, 273: 23-27. 10.1016/S0378-1119(01)00566-2.
Article
PubMed
CAS
Google Scholar
Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Doring P: The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol. 2006, 60: 759-772. 10.1007/s11103-005-5750-x.
Article
PubMed
CAS
Google Scholar
Rossel JB, Walter PB, Hendrickson L, Chow WS, Poole A, Mullineaux PM, Pogson BJ: A mutation affecting ascorbate peroxidase 2 gene expression reveals a link between responses to high light and drought tolerance. Plant Cell Environ. 2006, 29: 269-281. 10.1111/j.1365-3040.2005.01419.x.
Article
PubMed
CAS
Google Scholar
Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL: Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol. 2004, 136: 4159-4168. 10.1104/pp.104.052142.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zu YG, Tang ZH, Yu JH, Liu SG, Wang W, Guo XR: Different responses of camptothecin and 10-hydroxycamptothecin to heat shock in Camptotheca acuminata seedlings. Acta Botanica Sinica. 2003, 45: 809-814.
CAS
Google Scholar
Busch W, Wunderlich M, Schoffl F: Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J. 2005, 41: 1-14.
Article
PubMed
CAS
Google Scholar
Nishizawa A, Yabuta Y, Shigeoka S: Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 2008, 147: 1251-1263. 10.1104/pp.108.122465.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hincha DK, Zuther E, Heyer AG: The preservation of liposomes by raffinose family oligosaccharides during drying is mediated by effects on fusion and lipid phase transitions. Biochimica Et Biophysica Acta-Biomembranes. 2003, 1612: 172-177. 10.1016/S0005-2736(03)00116-0.
Article
CAS
Google Scholar
Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S: Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 2006, 48: 535-547. 10.1111/j.1365-313X.2006.02889.x.
Article
PubMed
CAS
Google Scholar
Weston DJ, Karve AA, Gunter LE, Jawdy SS, Yang X, Allen SM, Wullschleger SD: Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max. Plant Cell Environ. 2011, 34: 1488-1506. 10.1111/j.1365-3040.2011.02347.x.
Article
PubMed
CAS
Google Scholar
Kotak S, Larkindale J, Lee U, von Koskull-Doering P, Vierling E, Scharf K-D: Complexity of the heat stress response in plants. Curr Opin Plant Biol. 2007, 10: 310-316. 10.1016/j.pbi.2007.04.011.
Article
PubMed
CAS
Google Scholar
Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, et al: Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci. 2004, 29: 471-487. 10.1007/BF02712120.
Article
PubMed
CAS
Google Scholar
Klimecka M, Muszynska G: Structure and functions of plant calcium-dependent protein kinases. Acta Biochim Pol. 2007, 54: 219-233.
PubMed
CAS
Google Scholar
Lohmann C, Eggers-Schumacher G, Wunderlich M, Schoffl F: Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Mol Genet Genomics. 2004, 271: 11-21. 10.1007/s00438-003-0954-8.
Article
PubMed
CAS
Google Scholar
Schulz-Raffelt M, Lodha M, Schroda M: Heat shock factor 1 is a key regulator of the stress response in Chlamydomonas. Plant J. 2007, 52: 286-295. 10.1111/j.1365-313X.2007.03228.x.
Article
PubMed
CAS
Google Scholar
Qin D, Wu H, Peng H, Yao Y, Ni Z, Li Z, Zhou C, Sun Q: Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics. 2008, 9: 432. 10.1186/1471-2164-9-432.
Article
PubMed
PubMed Central
Google Scholar
Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R: The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem. 2008, 283: 9269-9275. 10.1074/jbc.M709187200.
Article
PubMed
CAS
Google Scholar
Jakoby M, Weisshaar B, Droge-Laser W: bZIP transcription factors in Arabidopsis. Trends Plant Sci. 2002, 7: 106-111. 10.1016/S1360-1385(01)02223-3.
Article
PubMed
CAS
Google Scholar
Qiu Y, Yu D: Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environmental and Experimental Botany. 2009, 65: 35-47. 10.1016/j.envexpbot.2008.07.002.
Article
CAS
Google Scholar
Olsen AN, Ernst HA, Lo Leggio L, Skriver K: NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 2005, 10: 79-87. 10.1016/j.tplants.2004.12.010.
Article
PubMed
CAS
Google Scholar
Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K: Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell. 2004, 16: 2481-2498. 10.1105/tpc.104.022699.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tarutani Y, Morimoto T, Sasaki A, Yasuda M, Nakashita H, Yoshida S, Yamaguchi I, Suzuki Y: Molecular characterization of two highly homologous receptor-like kinase genes, RLK902 and RKL1, in Arabidopsis thaliana. Biosci Biotechnol Biochem. 2004, 68: 1935-1941. 10.1271/bbb.68.1935.
Article
PubMed
CAS
Google Scholar
Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K: Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell. 2005, 17: 1105-1119. 10.1105/tpc.104.027474.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhou R, Li B, Liu H, Sun D: Progress in the participation of Ca(2+)-calmodulin in heat shock signal transduction. Progress in Natural Sci. 2009, 19: 1201-1208. 10.1016/j.pnsc.2008.12.011.
Article
CAS
Google Scholar
Mittler R, Finka A, Goloubinoff P: How do plants feel the heat?. Trends Biochem Sci. 2012, 37: 118-125. 10.1016/j.tibs.2011.11.007.
Article
PubMed
CAS
Google Scholar
Liu HT, Li B, Shang ZL, Li XZ, Mu RL, Sun DY, Zhou RG: Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol. 2003, 132: 1186-1195. 10.1104/pp.102.018564.
Article
PubMed
CAS
PubMed Central
Google Scholar
Saidi Y, Finka A, Goloubinoff P: Heat perception and signalling in plants: a tortuous path to thermotolerance. New Phytol. 2011, 190: 556-565. 10.1111/j.1469-8137.2010.03571.x.
Article
PubMed
CAS
Google Scholar
Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ: Gene expression profiles during the initial phase of salt stress in rice. Plant Cell. 2001, 13: 889-905.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li C, Wong WH: Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection. Proc Natl Acad Sci USA. 2001, 98: 31-36. 10.1073/pnas.98.1.31.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li C, Hung Wong W: Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol. 2001, 2: RESEARCH0032.
PubMed
CAS
PubMed Central
Google Scholar
Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD, Schlauch KA, Merillon JM, Cushman JC, Cramer GR: Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics. 2009, 10: 212. 10.1186/1471-2164-10-212.
Article
PubMed
PubMed Central
Google Scholar
Reid KE, Olsson N, Schlosser J, Peng F, Lund ST: An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol. 2006, 6: 27. 10.1186/1471-2229-6-27.
Article
PubMed
PubMed Central
Google Scholar
Jarosova J, Kundu JK: Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. BMC Plant Biol. 2010, 10: 146. 10.1186/1471-2229-10-146.
Article
PubMed
PubMed Central
Google Scholar