Winkelmann T, Kaviani K, Serek M: Development of a shoot regeneration protocol for genetic transformation in Pelargonium zonale and Pelargonium peltatum hybrids. Plant Cell Tiss Org Cult. 2005, 80: 33-42. 10.1007/s11240-004-5788-5.
Article
CAS
Google Scholar
Cassells AC, Carney BF: Adventitious regeneration in Pelargonium x domesticum. Acta Hort. 1987, 212: 419-423.
Article
Google Scholar
Dunbar KB, Stephens CT: Shoot regeneration of hybrid seed geranium (Pelargonium x hortorum) and regal geranium (Pelargonium x domesticum) from primary callus cultures. Plant Cell Tiss Org Cult. 1989, 19: 13-21. 10.1007/BF00037772.
Article
Google Scholar
Boase MR, Deroles SC, Winnefield CS, Butcher SM, Borst NK, Butler RC: Genetic transformation of regal pelargonium (Pelargonium x domesticum ‘Dubonnet’) by Agrobacterium tumefaciens. Plant Sci. 1996, 121: 47-61. 10.1016/S0168-9452(96)04508-6.
Article
CAS
Google Scholar
Robichon MP, Renou JP, Jalouzot R: Plant regeneration of ivy leaved geranium through shoot organogenesis. Plant Cell Tiss Org Cult. 1997, 49: 209-212. 10.1023/A:1005843901764.
Article
CAS
Google Scholar
Agarwal PK, Ranu RS: Regeneration of plantlets from leaf and petiole explants of Pelargonium x hortorum. In Vitro Cell Dev Biol Plant. 2000, 36: 392-397. 10.1007/s11627-000-0070-y.
Article
CAS
Google Scholar
Mithila J, Murch SJ, KrishnaRaj S, Saxena PK: Recent advances in Pelargonium in vitro regeneration system. Plant Cell Tiss Org Cult. 2001, 67: 1-9. 10.1023/A:1011601517200.
Article
CAS
Google Scholar
Cassells AC: The effect of 2,3,5-triiodobenzoic acid on caulogenesis in callus culture of tomato and pelargonium. Physiol Plant. 1979, 46: 159-164. 10.1111/j.1399-3054.1979.tb06550.x.
Article
CAS
Google Scholar
KrishnaRaj S, Bi YM, Saxena PK: Somatic embryogenesis and Agrobacterium-mediated transformation system for scented geraniums (Pelargonium sp. ‘Frensham’). Planta. 1997, 201: 434-440. 10.1007/s004250050086.
Article
CAS
Google Scholar
Haensch KT: Somatic embryogenesis in vitro from adult plants of pelargonium: Influence of genotype and basal medium. Gartenbauwissenschaft. 1999, 64: 193-200.
Google Scholar
Haensch KT: Morpho-histological study of somatic embryo-like structures in hypocotyls culture of Pelargonium x hortorum Bailey. Plant Cell Rep. 2004, 22: 376-381. 10.1007/s00299-003-0726-2.
Article
PubMed
CAS
Google Scholar
Boase MR, Bradley JM, Borst NK: An improved method for transformation of regal pelargonium (Pelargonium x domesticum) by Agrobacterium tumefaciens. Plant Sci. 1998, 1998 (139): 59-69.
Article
Google Scholar
Pellegrineschi A, Davolio-Mariani O: Agrobacterium rhizogenes-mediated transformation of scented geranium. Plant Cell Tiss Org Cult. 1996, 47: 79-86. 10.1007/BF02318969.
Article
Google Scholar
Bi YM, Cammue BPA, Goodwin PH, KrishnaRaj S, Saxena PK: Resistance to Botrytis cinerea in scented geranium transformed with a gene encoding the antimicrobial protein Ace-AMP1. Plant Cell Rep. 1999, 18: 835-840. 10.1007/s002990050670.
Article
CAS
Google Scholar
Van Staden J, Cook EL, Nooden LD: Cytokinins and senescence. Senescence and Aging in Plants. Edited by: Nooden LD, Leopold AC. 1998, Academic, London, 282-328.
Google Scholar
Singh S, Letham DS, Palni LMS: Cytokinin biochemistry in relation to leaf senescence. Physiol Plant. 1992, 86: 388-406. 10.1111/j.1399-3054.1992.tb01334.x.
Article
CAS
Google Scholar
Gan S, Amasino RM: Cytokinins in plant senescence: from spray and pray to clone and play. Bioessays. 1996, 18: 557-565. 10.1002/bies.950180707.
Article
CAS
Google Scholar
Gan S, Amasino RM: Making sense of senescence: molecular genetics regulation of leaf senescence. Plant Physiol. 1997, 113: 313-319.
PubMed
CAS
PubMed Central
Google Scholar
Buchanan-Wollaston V: The molecular biology of leaf senescence. J Exp Bot. 1997, 48: 181-199. 10.1093/jxb/48.2.181.
Article
Google Scholar
Nam HG: The molecular genetic analysis of leaf senescence. Curr Opin Biotechnol. 1997, 8: 200-207. 10.1016/S0958-1669(97)80103-6.
Article
PubMed
CAS
Google Scholar
Skene KGM: Cytokinin production by roots as a factor in the control of plant growth. The Developmental Function of Roots. Edited by: Torrey JG, Clarkson DT. 1975, Academic, New York, 365-396.
Google Scholar
Nooden LD, Singh S, Letham DS: Correlation of xylem sap cytokinin levels with monocarpic senescence in soybean. Plant Physiol. 1990, 93: 33-39. 10.1104/pp.93.1.33.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kays SJ: Postharvest Physiology of Perishable Plant Products. 1991, AVI/Van Nostrand Reinhold, New York
Book
Google Scholar
McGaw BA, Burch LR: Cytokinin biosynthesis and metabolism. Plant Hormones: Physiology, Biochemistry and Molecular Biology. Edited by: Davies PJ. 1995, Kluwer Academic Publishers, Dordrecht, The Netherlands, 98-117. 2
Chapter
Google Scholar
Mok DWS, Mok MC: Cytokinin: Chemistry, Activity, and Function. 1994, CRC Press, Boca Raton, FL
Google Scholar
Medford JI, Horgan R, El-Sawi Z, Klee HJ: Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell. 1989, 1: 403-413.
Article
PubMed
CAS
PubMed Central
Google Scholar
Smart CM, Scofield SR, Bevan MW, Dyer TA: Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium. Plant Cell. 1991, 3: 647-656.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li Y, Hagen G, Guilfoyle TJ: Altered morphology in transgenic tobacco plants that over-produce cytokinins in specific tissues and organs. Dev Biol. 1992, 153: 386-395. 10.1016/0012-1606(92)90123-X.
Article
PubMed
CAS
Google Scholar
Wang J, Letham DS, Cornish E, Stevenson KR: Studies of cytokinin action and metabolism using tobacco plants expressing either the ipt or the gus gene controlled by a chalcone synthase promoter: I. Developmental features of the transgenic plants. Aust J Plant Physiol. 1997, 24: 661-672. 10.1071/PP96101.
Article
CAS
Google Scholar
Wang J, Letham DS, Cornish E, Wei K, Hocart CH, Michael M, Stevenson KR: Studies of cytokinin action and metabolism using tobacco plants expressing either the ipt or gus gene controlled by a chalcone synthase promoter: II. ipt and gus gene expression, cytokinin levels and metabolism. Aust J Plant Physiol. 1997, 24: 673-683. 10.1071/PP96102.
Article
CAS
Google Scholar
Gan S, Amasino RM: Inhibition of leaf senescence by autoregulated production of cytokinin. Science. 1995, 270: 1986-1988. 10.1126/science.270.5244.1986.
Article
PubMed
CAS
Google Scholar
Lohman KN, Gan S, John MC, Amasino RM: Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant. 1994, 92: 322-328. 10.1111/j.1399-3054.1994.tb05343.x.
Article
CAS
Google Scholar
Hidekamp F, Dinkse WG, Hille J, Van Ormondt H: Nucleotide sequence of the Agrobacterium tumefaciens octopine Ti plasmid-encoded tmr gene. Nucleic Acids Res. 1983, 11: 6211-6233. 10.1093/nar/11.18.6211.
Article
Google Scholar
Fu Y, Ding Y, Liu X, Sun C, Cao S, Wang D, He S, Wang X, Li L, Tian W: Rice transformation with a senescence inhibition chimeric gene. Chin Sci Bull. 1998, 43: 1810-1815. 10.1007/BF02883378.
Article
CAS
Google Scholar
Nguyen KHT, Kane EJ, Dix PJ: Hormonal regulation of senescence in cauliflower (Brassica oleracea var. Botrytis). Abstract no. 96. Plant Biotechnology and In Vitro Biology in the 21st Century. Edited by: Altman A, Ziv M, Izhar S. 1998, IX International Congress Plant Tissue Culture. Kluwer Academic Publishers, Dordrecht, The Netherlands, 164.
Google Scholar
McCabe MS, Mohapatra U, Schepers F, van Dun K, Power JB, Davey M: Delayed senescence in transgenic lettuce using an autoregulated ipt gene. J Exp Bot Suppl. 1998, 49: 49-
Article
Google Scholar
McCabe MS, Garratt LC, Schepers F, Jordi WJRM, Stoopen GM, Davelaar E, van Rhijn JHA, Power JB, Davey MR: Effects of PSAG12-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol. 2001, 127: 505-516. 10.1104/pp.010244.
Article
PubMed
CAS
PubMed Central
Google Scholar
Roque E, Gómez MD, Ellull P, Wallbraun M, Madueño F, Beltrán JP, Cañas LA: The PsEND1 promoter: a novel tool to produce genetically engineered male-sterile plants by early anther ablation. Plant Cell Rep. 2007, 26: 313-325. 10.1007/s00299-006-0237-z.
Article
PubMed
CAS
Google Scholar
García-Sogo B, Pineda B, Castelblanque L, Antón T, Medina M, Roque E, Torresi C, Beltrán JP, Moreno V, Cañas LA: Efficient transformation of Kalanchoe blossfeldiana and production of male-sterile plants by engineered anther ablation. Plant Cell Rep. 2010, 29: 66-77.
Article
Google Scholar
Gardner N, Felsheim R, Smith AG: Production of male- and female-sterile plants through reproductive tissue ablation. J Plant Physiol. 2009, 166 (8): 871-881. 10.1016/j.jplph.2008.10.002.
Article
PubMed
CAS
Google Scholar
Gómez MD, Beltrán JP, Cañas LA: The pea END1 promoter drives anther-specific gene expression in different plant species. Planta. 2004, 219: 967-981. 10.1007/s00425-004-1300-z.
Article
PubMed
Google Scholar
Pistón F, García C, de la Viña G, Beltrán JP, Cañas LA, Barro F: The pea PsEND1 promoter drives the expression of GUS in transgenic wheat at the binucleate microspores stage and during pollen tube development. Mol Breed. 2008, 21: 401-405. 10.1007/s11032-007-9133-7.
Article
Google Scholar
Mariani C, DeBeuckeleer M, Truettner J, Leemans J, Goldberg RB: Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature. 1990, 347: 737-741. 10.1038/347737a0.
Article
CAS
Google Scholar
Mariani C, Gossele V, De Beuckeleer M, De Block M, Goldberg RB, De GW, Leemans J: A chimaeric ribonuclease inhibitor gene restores fertility to male sterile plants. Nature. 1992, 357: 384-387. 10.1038/357384a0.
Article
CAS
Google Scholar
Murashige T, Skoog F: A revised medium for rapid growth and bio-assay with tobacco tissue cultures. Physiol Plantarum. 1962, 75: 325-332.
Google Scholar
Shahin EA: Totipotency of tomato protoplasts. Theor Appl Genet. 1985, 69: 235-240. 10.1007/BF00662431.
Article
PubMed
CAS
Google Scholar
Chiu WL, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J: Engineered GFP as a vital reporter in plants. Curr Biol. 1996, 6: 325-330. 10.1016/S0960-9822(02)00483-9.
Article
PubMed
CAS
Google Scholar
Hartley RW: Barnase and barstar: expression of its cloned inhibitor permits expression of a cloned ribonuclease. J Mol Biol. 1968, 202: 913-915.
Article
Google Scholar
Atarés A, Moyano E, Morales B, Schleicher P, García-Abellán JO, Antón T, García-Sogo B, Pérez-Martín F, Lozano R, Flores FB, Moreno V, Bolarín MC, Pineda B: An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii. Plant Cell Rep. 2011, 30: 1865-1879. 10.1007/s00299-011-1094-y.
Article
PubMed
PubMed Central
Google Scholar
Rogers SO, Bendich AJ: Extraction of total cellular DNA from plants, algae and fungi. Plant Mol Biol Manual. 1994, D1: 1-8.
Google Scholar
He J, Gray J, Leisner S: A Pelargonium ARGONAUTE4 gene shows organ-specific expression and differences in RNA and protein levels. J Plant Physiol. 2010, 167: 319-325. 10.1016/j.jplph.2009.10.004.
Article
PubMed
CAS
Google Scholar
Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987, 6 (13): 3901-3907.
PubMed
CAS
PubMed Central
Google Scholar
Lichtenthaler HK: Chlorophylls and carotenoids: Pigments of photosynthetic biomenbranes. Met Enzymol. 1987, 148: 350-382.
Article
CAS
Google Scholar
Elliot AR, Campbell JA, Dugdale B, Brettell RIS, Grof CPL: Green fluorescent protein facilitates rapid in vivo detection of genetically transformed plant cells. Plant Cell Rep. 1999, 18: 707-714. 10.1007/s002990050647.
Article
Google Scholar
Escobar MA, Park JI, Polito VS, Leslie CA, Uratsu SL, Mc Granahan GH, Dandekar AM: Using GFP as a scorable marker in walnut somatic embryo transformation. Ann Bot. 2000, 85 (6): 831-835. 10.1006/anbo.2000.1143.
Article
CAS
Google Scholar
Ghorbel R, Juárez J, Navarro L, Peña L: Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants. Theor Appl Genet. 1999, 99: 350-358. 10.1007/s001220051244.
Article
Google Scholar
Pérez-Clemente RM, Pérez A, García L, Beltrán JP, Cañas LA: Transformation and regeneration of peach plants (Prunus persica L.) from embryo sections using the green fluorescent protein (GFP) as a vital marker. Mol Breed. 2004, 14: 419-427. 10.1007/s11032-004-0506-x.
Article
Google Scholar
Rakosy-Tican E, Aurori CM, Dijkstra C, Thieme R, Aurori A, Davey MR: The usefulness of the gfp reporter gene for monitoring Agrobacterium-mediated transformation of potato dihaploid and tetraploid genotypes. Plant Cell Rep. 2007, 26 (5): 661-671. 10.1007/s00299-006-0273-8.
Article
PubMed
CAS
Google Scholar
Yancheva SD, Shlizerman LA, Golubowicz S, Yabloviz Z, Perl A, Hanania U, Flaishman MA: The use of green fluorescent protein (GFP) improves Agrobacterium-mediated transformation of ‘Spadona’ pear (Pyrus communis L.). Plant Cell Rep. 2006, 25: 183-189. 10.1007/s00299-005-0025-1.
Article
PubMed
CAS
Google Scholar
Baranski B, Klocke E, Schumann G: Green fluorescent protein as an efficient selection marker for Agrobacterium rhizogenes mediated carrot transformation. Plant Cell Rep. 2006, 25: 190-10.1007/s00299-005-0040-2.
Article
PubMed
CAS
Google Scholar
Mercuri A, Sacchetti A, De Benedetti A, Schiva T, Alberti S: Green fluorescent flowers. Plant Sci. 2001, 161: 961-968. 10.1016/S0168-9452(01)00497-6.
Article
CAS
Google Scholar
Hraska M, Rakousky S, Curn V: Green fluorescent protein as a vital marker for nondestructive detection of transformation events in transgenic plants. Plant Cell Tiss Org Cult. 2006, 86: 303-318. 10.1007/s11240-006-9131-1.
Article
CAS
Google Scholar
Domínguez A, Cervera M, Pérez RM, Romero J, Fagoaga C, Cubero J, López MM, Juárez JA, Navarro L, Peña L: Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Mol Breed. 2004, 14: 171-183.
Article
Google Scholar
Hempel FD, Patricia C, Zambryski PC, Feldman LJ: Photoinduction of flower identity in vegetatively biased primordia. Plant Cell. 1988, 10: 1663-1676.
Article
Google Scholar
Took F, Ordidge M, Chiurugwi T, Battey N: Mechanisms and function of flower and inflorescence reversion. J Exp Bot. 2005, 56 (420): 2587-2599. 10.1093/jxb/eri254.
Article
Google Scholar
Lejeune P, Kinet J-M, Bernier G: Cytokinin fluxes during floral induction in the long day plant Sinapis alba L. Plant Physiol. 1988, 86: 1095-1098. 10.1104/pp.86.4.1095.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lejeune P, Bernier G, Requier M-C, Kinet J-M: Cytokinin in phloem and xylem saps of Sinapis alba during floral induction. Physiol Plant. 1994, 90: 522-528. 10.1111/j.1399-3054.1994.tb08810.x.
Article
CAS
Google Scholar
Theis R, Röbbelen G: Anther and microspore development in different male sterile lines of oilseed rape (Brassica napus L.). Angew Bot. 1990, 64: 419-434.
Google Scholar
Denis M, Delourme R, Gourret JP, Mariani C, Renard M: Expression of engineered nuclear male-sterility in Brassica napus. Plant Physiol. 1993, 101: 1295-1304.
PubMed
CAS
PubMed Central
Google Scholar
Worral D, Hird DL, Hodge R, Paul W, Draper J, Scott R: Premature dissolution of microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell. 1992, 4: 759-771.
Article
Google Scholar
Jagannath A, Bandyopadhyay P, Arumugam N, Gupta V, Burma PK, Pental D: The use of spacer DNA fragment insulates the tissue-specific expression of a cytotoxic gene (barnase) and allows high-frequency generation of transgenic male sterile lines in Brassica juncea L. Mol Breed. 2001, 8: 11-23. 10.1023/A:1011916216191.
Article
CAS
Google Scholar
Stanislaus MA, Cheng CL: Genetically engineered self-destruction: an alternative to herbicides for cover crop systems. Weed Sci. 2002, 50: 794-801. 10.1614/0043-1745(2002)050[0794:GESDAA]2.0.CO;2.
Article
CAS
Google Scholar
Wei H, Meilan R, Brunner AM, Skinner JS, Ma C, Gandhi HT, Strauss SH: Field trial detects incomplete barstar attenuation of vegetative cytotoxicity in Populus trees containing a poplar LEAFY promoter: barnase sterility transgene. Mol Breed. 2007, 19: 69-85.
Article
CAS
Google Scholar