Lane CE, Mayes C, Druehl LD, Saunders GW: A multi-gene molecular investigation of the kelp (Laminariales, Phaeophyceae) supports substantial reorganisation. J Phycol. 2006, 42: 493-512. 10.1111/j.1529-8817.2006.00204.x.
CAS
Google Scholar
Silberfeld T, Leigh JW, Verbruggen H, Cruaud C, de Reviers B, Rousseau F: A multi-locus time-calibrated phylogeny of the brown algae (Heterokonta, Ochrophyta, Phaeophyceae): Investigating the evolutionary nature of the "brown algal crown radiation". Mol Phylogenet Evol. 2010, 56: 659-674. 10.1016/j.ympev.2010.04.020.
PubMed
CAS
Google Scholar
Verbruggen H, Maggs CA, Saunders GW, Le Gall L, Yoon HS, De Clerck O: Data mining approach identifies research priorities and data requirements for resolving the red algal tree of life. BMC Evol Biol. 2010, 10: 16-10.1186/1471-2148-10-16.
PubMed
PubMed Central
Google Scholar
Miуabe K: Laminariaceae of Hokkaido. Rep Fish Dept Hokkaido-tyo. 1902, 3: 1-60.
Google Scholar
Zinova ES: Marine cabbage (Laminaria) and other commercially important algae. Izv TINRO. 1928, 1: 7-42.
Google Scholar
Petrov YuE: Systematics of some species of the genus Laminariae Lamour. from the Far East. Novit Syst Plant Non Vascularium. 1972, 9: 47-59.
Google Scholar
Tokida J, Nakamura Y, Druehl LD: Typification of species of Laminaria (Phaeophyta, Laminariales) described by Miyabe, and taxonomic notes on the genus in Japan. Phycologia. 1980, 19: 317-328. 10.2216/i0031-8884-19-4-317.1.
Google Scholar
Yotsukura N, Denboh T, Motomura T, Horiguchi T, Coleman AW, Ichimura T: Little divergence in ribosomal DNA internal transcribed spacer −1 and −2 sequences among non-digitate species of Laminaria (Phaeophyceae) from Hokkaido, Japan. Phycol Res. 1999, 47: 71-80. 10.1111/j.1440-1835.1999.tb00286.x.
CAS
Google Scholar
Yotsukura N, Kawai T, Kawashima S, Ebata H, Ichimura T: Nucleotide sequence diversity of the 5 S rDNA spacer in the simple blade kelp genera Laminaria, Cymathaere and Kjellmaniella (Laminariales, Phaeophyceae) from northern Japan. Phycol Res. 2006, 54: 269-279. 10.1111/j.1440-1835.2006.00434.x.
CAS
Google Scholar
Yotsukura N, Kawashima S, Kawai T, Abe T, Druehl LD: A systematic re-examination of four Laminaria species: L. japonica, L. religiosa, L. ochotensis, and L. diabolica. J Jpn Bot. 2008, 83: 165-176.
Google Scholar
Yotsukura N, Shimizu T, Katayama T, Druehl LD: Mitochondrial DNA sequence variation of four Saccharina species in Japan. J Appl Phycol. 2010, 22: 243-251. 10.1007/s10811-009-9452-7.
CAS
Google Scholar
Yotsukura N: Molecular phylogeny of advanced kelps (Laminariales, Phaeophyceae) growing in Japan. Nat Hist Res Spec. 2005, 8: 69-81.
Google Scholar
Selivanova ON, Zhigadlova GG, Hansen GI: Revision of the systematics of algae in the order Laminariales (Phaeophyta) from the Far-Eastern seas of Russia on the basis of molecular-phylogenetic data. Russ J Mar Biol. 2007, 33: 278-289. 10.1134/S1063074007050021.
Google Scholar
Bartsch I, Wiencke C, Bischof K, Buchholz CM, Buck BH, Eggert A, Feuerpfeil P, Hanelt D, Jacobsen S, Karez R, Karsten U, Molis M, Roleda MY, Schubert H, Schumann R, Valentin K, Weinberger F, Wiese J: The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol. 2008, 43: 1-86. 10.1080/09670260701711376.
Google Scholar
Gail GI: Laminariaceous algae of the Far Eastern seas. Vestnik DV FAN SSSR. 1936, 19: 31-64.
Google Scholar
Sukhoveeva MV: The algae distribution of along the Primorye coast region. Izv TINRO. 1967, 61: 255-260.
Google Scholar
Gusarova IS, Ivanova NV: Intraspecific systematic of Laminaria japonica at the continental coast of the Japan Sea. Izv TINRO. 2006, 147: 157-168.
Google Scholar
Krupnova TN: Influence of oceanology-climatic factors on dynamics of Laminaria japonica Aresch. fields in northwest part of the Sea of Japan. Sea Hydrology and Hydrochemistry: 8(2):162–166. Hydrometeoizdat: Japan Sea. Leningrad; 2004.
Google Scholar
Krupnova TN: Instruction on Cultivation and Recovery of Laminaria Fields. Vladivostok: Russia: Pacific Research Fisheries Centre (TINRO-Centre); 2008.
Google Scholar
Paimeeva LG: Distribution and growth of Laminaria japonica Aresch f. longipes (Miyabe et Tokida) Petr. in northern Primorye. In Commercial Algae and Their Use. 1987, Moscow: Nauka, 26-33.
Google Scholar
Paimeeva LG, Gusarova IS: Laminaria japonicaAresch. f.longipes(Miyabe et Tokida) Ju. Petr. bed condition in Northern Primorye. Komarov Reading. 1993, 38: 20-36. Vladivostok: Dal'nauka
Google Scholar
Hasegawa YJ: An ecological study of Laminaria angustat Kjellman on the coast of Hidaka Prov., Hokkaido. Bull Hokkaido Reg Fish Lab. 1962, 24: 116-138.
Google Scholar
Krupnova TN, Pavlyuchkov VA: Developing biotechnology to increase commercial stocks of sea urchins by creating a favorable food supply. TINRO archive. 1999, 23285: 38-
Google Scholar
Krupnova TN, Pavlyuchkov VA: Biotechnology materials for the combined cultivation of kelp and sea urchins. TINRO archive. 2000, 23647: 54-
Google Scholar
Krupnova TN: Reorganization of Laminaria fields under the influence of natural and anthropogenic factors. TINRO archive. 2010, 26962: 56-
Google Scholar
Petrov YuE, Sukhoveeva MV: Laminaria angustata Kjellm. at the coasts of Primorskii region. Novit Syst Plant Non Vascularium. 1972, 9: 44-47.
Google Scholar
Price TD, Qvarnström A, Irwin DE: The role of phenotypic plasticity in driving genetic evolution. Proc R Soc Lond B. 2003, 270: 1433-1440. 10.1098/rspb.2003.2372.
Google Scholar
Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP: Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol. 2010, 25: 459-467. 10.1016/j.tree.2010.05.006.
PubMed
Google Scholar
Thibert-Plante X, Hendry AP: The consequences of phenotypic plasticity for ecological speciation. J Evol Biol. 2011, 24: 326-342. 10.1111/j.1420-9101.2010.02169.x.
PubMed
CAS
Google Scholar
Hays CG: Adaptive phenotypic differentiation across the intertidal gradient in the alga Silvetia compressa. Ecology. 2007, 88: 149-157. 10.1890/0012-9658(2007)88[149:APDATI]2.0.CO;2.
PubMed
Google Scholar
Monro K, Poore AGB: Performance benefits of growth-form plasticity in a clonal red seaweed. Biol J Linn Soc. 2009, 97: 80-89. 10.1111/j.1095-8312.2008.01186.x.
Google Scholar
Balakirev ES, Balakirev EI, Rodriguez-Trelles F, Ayala FJ: Molecular evolution of two linked genes, Est-6 and Sod, in Drosophila melanogaster. Genetics. 1999, 153: 1357-1369.
PubMed
CAS
PubMed Central
Google Scholar
Balakirev ES, Balakirev EI, Ayala FJ: Molecular evolution of the Est-6 gene in Drosophila melanogaster: Contrasting patterns of DNA variability in adjacent functional regions. Gene. 2002, 288: 167-177. 10.1016/S0378-1119(02)00477-8.
PubMed
CAS
Google Scholar
Balakirev ES, Chechetkin VR, Lobzin VV, Ayala FJ: DNA polymorphism in the β-esterase gene cluster of Drosophila melanogaster. Genetics. 2003, 164: 533-544.
PubMed
CAS
PubMed Central
Google Scholar
Oudot-Le Secq M-P, Fontaine J-M, Rousvoal S, Kloareg B, Loiseaux-de Goër S: The complete sequence of a brown algal mitochondrial genome, the Ectocarpale Pylaiella littoralis (L.) Kjellm. J Mol Evol. 2001, 53: 80-88.
PubMed
CAS
Google Scholar
Oudot-Le Secq M-P, Kloareg B, Loiseaux-de Goër S: The mitochondrial genome of the brown alga Laminaria digitata: a comparative analysis. Eur J Phycol. 2002, 37: 163-172. 10.1017/S0967026202003542.
Google Scholar
Loiseaux-de Goër S, Stam WT, Olsen JL, Oudot-Le Secq M-P: Complete mitochondrial genomes of the three brown algae (Heterokonta: Phaeophyceae) Dictyota dichotoma, Fucus vesiculosus and Desmarestia viridis. Curr Genet. 2006, 49: 47-58. 10.1007/s00294-005-0031-4.
PubMed
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22: 4673-4680. 10.1093/nar/22.22.4673.
PubMed
CAS
PubMed Central
Google Scholar
Librado P, Rozas J: DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009, 25: 1451-1452. 10.1093/bioinformatics/btp187.
PubMed
CAS
Google Scholar
Filatov DA: PROSEQ: a software for preparation and evolutionary analysis of DNA sequence data sets. Mol Ecol Notes. 2002, 2: 621-624. 10.1046/j.1471-8286.2002.00313.x.
CAS
Google Scholar
Lane CE, Lindstrom SC, Saunders GW: A molecular assessment of northern Pacific Alaria species (Laminariales, Phaeophyceae) with reference to the utility of DNA barcoding. Mol Phylogenet Evol. 2007, 44: 634-648. 10.1016/j.ympev.2007.03.016.
PubMed
CAS
Google Scholar
McDevit DC, Saunders GW: On the utility of DNA barcoding for species differentiation among brown macroalgae (Phaeophyceae) including a novel extraction protocol. Phycol Res. 2009, 57: 131-141. 10.1111/j.1440-1835.2009.00530.x.
CAS
Google Scholar
McDevit DC, Saunders GW: A DNA barcode examination of the Laminariaceae (Phaeophyceae) in Canada reveals novel biogeographical and evolutionary insights. Phycologia. 2010, 49: 235-248. 10.2216/PH09-36.1.
CAS
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28: 2731-2739. 10.1093/molbev/msr121.
PubMed
CAS
PubMed Central
Google Scholar
Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008, 25: 1253-1256. 10.1093/molbev/msn083.
PubMed
CAS
Google Scholar
Schwarz GE: Estimating the dimension of a model. Ann Stat. 1978, 6: 461-464. 10.1214/aos/1176344136.
Google Scholar
Akaike H: A new look at the statistical model identification. IEEE Trans Automat Contr. 1974, 19: 716-723. 10.1109/TAC.1974.1100705.
Google Scholar
Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985, 39: 783-791. 10.2307/2408678.
Google Scholar
Zwickl DJ: Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. 2006, Austin: The University of Texas, Ph.D. thesis
Google Scholar
Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP: 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012, 61: 1-4. 10.1093/sysbio/syr074.
Google Scholar
Gelman A, Rubin DB: Inference from iterative simulation using multiple sequences. Stat Sci. 1992, 7: 457-511. 10.1214/ss/1177011136.
Google Scholar
Saitou N, Imanishi T: Relative efficiencies of the Fitch-Margoliash, Maximum-Parsimony, Maximum-Likelihood, Minimum-Evolution, and Neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. Mol Biol Evol. 1989, 6: 514-525.
CAS
Google Scholar
Tateno Y, Takezaki N, Nei M: Relative efficiencies of the Maximum-Likelihood, Neighbor-joining, and Maximum-Parsimony methods when substitution rate varies with site. Mol Biol Evol. 1994, 11: 261-277.
PubMed
CAS
Google Scholar
Russo CAM, Takezaki N, Nei M: Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny. Mol Biol Evol. 1996, 13: 525-536. 10.1093/oxfordjournals.molbev.a025613.
PubMed
CAS
Google Scholar
Robba L, Russell SJ, Barker GL, Brodie J: Assessing the use of the mitochondrial COX1 marker for use in DNA barcoding of red algae (Rhodophyta). Amer J Botany. 2006, 93: 1101-1108. 10.3732/ajb.93.8.1101.
CAS
Google Scholar
Fraser CI, Nikula R, Spencer HG, Waters JM: Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. Proc Natl Acad USA. 2009, 106: 3249-3253. 10.1073/pnas.0810635106.
CAS
Google Scholar
Clarkston BE, Saunders GW: A comparison of two DNA barcode markers for species discrimination in the red algal family Kallymeniaceae (Gigartinales, Florideophyceae), with a description of Euthora timburtonii sp. nov. Botany. 2010, 88: 119-131. 10.1139/B09-101.
CAS
Google Scholar
Shan TF, Pang SJ, Zhang YR, Yakovleva IM, Skriptsova AV: An AFLP-based survey of genetic diversity and relationships of major farmed cultivars and geographically isolated wild populations of Saccharina japonica (Phaeophyta) along the northwest coasts of the Pacific. J Appl Phycol. 2010, 23: 35-45.
Google Scholar
Avise JC: Phylogeography: the History and Formation of Species. 2000, Cambridge, MA: Harvard University Press
Google Scholar
Selivanova ON, Yotsukura N, Kawashima S: Comparison of some Laminaria species from Pacific coasts of Russia and Japan. Phycologia. 2005, 44: 92-93.
Google Scholar
Saunders GW: Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Phil Trans R Soc B. 2005, 60: 1879-1888.
Google Scholar
Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P: RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics. 2010, 26: 2462-2463. 10.1093/bioinformatics/btq467.
PubMed
CAS
PubMed Central
Google Scholar
Lemey P, Lott M, Martin DP, Moulton V: Identifying recombinants in human and primate immunodeficiency virus sequence alignments using quartet scanning. BMC Bioinforma. 2009, 10: 126-10.1186/1471-2105-10-126.
Google Scholar
Weiller GF: Phylogenetic profiles: a graphical method for detecting genetic recombinations in homologous sequences. Mol Biol Evol. 1998, 15: 326-335. 10.1093/oxfordjournals.molbev.a025929.
PubMed
CAS
Google Scholar
Beiko RG, Hamilton N: Phylogenetic identification of lateral genetic transfer events. BMC Evol Biol. 2006, 6: 15-10.1186/1471-2148-6-15.
PubMed
PubMed Central
Google Scholar
Martin D, Rybicki E: RDP: detection of recombination amongst aligned sequences. Bioinformatics. 2000, 16: 562-563. 10.1093/bioinformatics/16.6.562.
PubMed
CAS
Google Scholar
Padidam M, Sawyer S, Fauquet CM: Possible emergence of new geminiviruses by frequent recombination. Virology. 1999, 265: 218-225. 10.1006/viro.1999.0056.
PubMed
CAS
Google Scholar
Martin DP, Posada D, Crandall KA, Williamson C: A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. Aids Res Hum Retrovir. 2005, 21: 98-102. 10.1089/aid.2005.21.98.
PubMed
CAS
Google Scholar
Bredell H, Martin DP, Van Harmelen J, Varsani A, Sheppard HW, Donovan R, Gray CM, Williamson C, Team HS: HIV type 1 subtype C gag and nef diversity in southern Africa. Aids Res Hum Retrovir. 2007, 23: 477-481. 10.1089/aid.2006.0232.
PubMed
CAS
Google Scholar
Smith JM: Analyzing the mosaic structure of genes. J Mol Evol. 1992, 34: 126-129.
PubMed
CAS
Google Scholar
Posada D, Crandall KA: Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci USA. 2001, 98: 13757-13762. 10.1073/pnas.241370698.
PubMed
CAS
PubMed Central
Google Scholar
Gibbs MJ, Armstrong JS, Gibbs AJ: Sister-Scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics. 2000, 16: 573-582. 10.1093/bioinformatics/16.7.573.
PubMed
CAS
Google Scholar
Balakirev ES, Ayala FJ: Pseudogenes: are they “junk” or functional DNA?. Annu Rev Genet. 2003, 37: 123-151. 10.1146/annurev.genet.37.040103.103949.
PubMed
CAS
Google Scholar
Ladoukakis ED, Theologidis I, Rodakis GC, Zouros E: Homologous recombination between highly diverged mitochondrial sequences: examples from maternally and paternally transmitted genomes. Mol Biol Evol. 2011, 28: 1847-1859. 10.1093/molbev/msr007.
PubMed
CAS
Google Scholar
Ballard JW, Whitlock MC: The incomplete natural history of mitochondria. Mol Ecol. 2004, 13: 729-744. 10.1046/j.1365-294X.2003.02063.x.
PubMed
Google Scholar
Barr CM, Neiman M, Taylor DR: Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. New Phytol. 2005, 168: 39-50. 10.1111/j.1469-8137.2005.01492.x.
PubMed
CAS
Google Scholar
Galtier N, Nabholz B, Glémin S, Hurst GDD: Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol. 2009, 18: 4541-4550. 10.1111/j.1365-294X.2009.04380.x.
PubMed
CAS
Google Scholar
Coyer JA, Hoarau G, Stam WT, Olsen JL: Geographically specific heteroplasmy of mitochondrial DNA in the seaweed, Fucus serratus (Heterokontophyta: Phaeophyceae, Fucales). Mol Ecol. 2004, 13: 1323-1326. 10.1111/j.1365-294X.2004.02128.x.
PubMed
CAS
Google Scholar
Hoarau G, Coyer JA, Olsen JL: Paternal leakage of mitochondrial DNA in a Fucus (Phaeophyceae) hybrid zone. J Phycol. 2009, 45: 621-624. 10.1111/j.1529-8817.2009.00679.x.
CAS
Google Scholar
Reisberg LH: Hybrid origins of plant species. Annu Rev Ecol Syst. 1997, 28: 359-389. 10.1146/annurev.ecolsys.28.1.359.
Google Scholar
Chapman MA, Burke JM: Genetic divergence and hybrid speciation. Evolution. 2007, 61: 1773-1780. 10.1111/j.1558-5646.2007.00134.x.
PubMed
Google Scholar
Mallet J: Hybrid speciation. Nature. 2007, 446: 279-283. 10.1038/nature05706.
PubMed
CAS
Google Scholar
Arnold ML, Fogarty ND: Reticulate evolution and marine organisms: the final frontier?. Int J Mol Sci. 2009, 10: 3836-3860. 10.3390/ijms10093836.
PubMed
CAS
PubMed Central
Google Scholar
Coyer JA, Peters AF, Hoarau G, Stam WT, Olsen JL: Hybridization of the marine seaweeds, Fucus serratus and F. evanescens (Heterokontophyta: Phaeophyceae) in a 100-year old zone of secondary contact. Proc R Soc Lond B. 2002, 269: 1829-1834. 10.1098/rspb.2002.2093.
CAS
Google Scholar
Coyer JA, Hoarau G, Pearson G, Serrão E, Stam WT, Olsen JL: Convergent adaptation to a marginal habitatby homoploid hybrids and polyploid ecads in the seaweed genus Fucus. Biol Lett. 2006, 2: 405-408. 10.1098/rsbl.2006.0489.
PubMed
CAS
PubMed Central
Google Scholar
Coyer JA, Hoarau G, Stam WT, Olsen JL: Hybridization and introgression in a mixed population of the intertidal seaweeds Fucus evanescens and F. serratus. J Evol Biol. 2007, 20: 2322-2333. 10.1111/j.1420-9101.2007.01411.x.
PubMed
CAS
Google Scholar
Wallace A, Klein AS, Mathieson AC: Determining the affinities of salt marsh fucoids using microsatellite markers: evidence of hybridization and introgression between two species of Fucus (Phaeophyta) in a Maine estuary. J Phycol. 2004, 40: 1013-1027. 10.1111/j.1529-8817.2004.04085.x.
CAS
Google Scholar
Niwa K, Sakamoto T: Allopolyploidy in natural and cultivated populations of Porphyra (Bangiales, Rhodophyta). J Phycol. 2010, 46: 1097-1105. 10.1111/j.1529-8817.2010.00897.x.
Google Scholar
Piganeau G, Gardner M, Eyre-Walker A: A broad survey of recombination in animal mitochondria. Mol Biol Evol. 2004, 21: 2319-2325. 10.1093/molbev/msh244.
PubMed
CAS
Google Scholar
Ciborowski KL, Consuegra S, García de Leániz C, Beaumont MA, Wang J, Jordan WC: Rare and fleeting: an example of interspecific recombination in animal mitochondrial DNA. Biol Lett. 2007, 3: 554-557. 10.1098/rsbl.2007.0290.
PubMed
CAS
PubMed Central
Google Scholar
Balakirev ES, Pavlyuchkov VA, Ayala FJ: DNA variation and endosymbiotic associations in phenotypically-diverse sea urchin Strongylocentrotus intermedius. Proc Nat Acad Sci USA. 2008, 105: 16218-16223. 10.1073/pnas.0807860105.
PubMed
CAS
PubMed Central
Google Scholar
Kraan S, Guiry MD: Sexual hybridization experiments and phylogenetic relationships as inferred from RUBISCO spacer sequences in the genus Alaria (Phaeophyceae). J Phycol. 2000, 35: 190-198.
Google Scholar
Liptack MK, Druehl LD: Molecular evidence for an interfamilial laminarialean cross. Eur J Phycol. 2000, 35: 135-142. 10.1080/09670260010001735721.
Google Scholar
Druehl LD, Collins JD, Lane CE, Saunders GW: An evaluation of methods used to assess intergeneric hybridization in kelp using Pacific Laminariales (Phaeophyceae). J Phycol. 2005, 41: 250-262. 10.1111/j.1529-8817.2005.04143.x.
CAS
Google Scholar
Xu P, Yang L, Zhu J, Xu H, Lu Q: Analysis of hybridization strains of Porphyra based on rbcL gene sequences. J Appl Phycol. 2011, 23: 235-241. 10.1007/s10811-010-9537-3.
CAS
Google Scholar
Druehl LD, Saunders GW: Molecular explorations in kelp evolution. Prog Phycol Res. 1992, 8: 47-83.
CAS
Google Scholar
Harrison RG: Molecular changes at speciation. Annu Rev Ecol Syst. 1991, 22: 281-308. 10.1146/annurev.es.22.110191.001433.
Google Scholar
Guiry MD: Species concepts in marine algae. Prog Phycol Res. 1992, 8: 251-278.
Google Scholar
Manhart JR, McCourt RM: Molecular data and species concepts in algae. J Phycol. 1992, 28: 730-737. 10.1111/j.0022-3646.1992.00730.x.
Google Scholar
Medlin LK, Lange M, Barker GLA, Hayes PK: Can molecular techniques change our ideas about the species concept?. In Molecular Ecology of Aquatic Microbes. Edited by: Joint I. Berlin: Springer;1995: 133-152. [NATO AS1 series, vol G38.]
Google Scholar
Hillis DM: Molecular versus morphological approaches to systematics. Annu Rev Ecol Syst. 1987, 18: 23-42. 10.1146/annurev.es.18.110187.000323.
Google Scholar
Schwander T, Leimar O: Genes as leaders and followers in evolution. Trends Ecol Evol. 2011, 26: 143-151. 10.1016/j.tree.2010.12.010.
PubMed
Google Scholar
Schlichting CD, Pigliucci M: Phenotypic Evolution: a Reaction Norm Perspective. 1998, Sunderland, MA: Sinauer Associates
Google Scholar
West-Eberhard MJ: Developmental Plasticity and Evolution. New York: Oxford University Press;2003.
Google Scholar
West-Eberhard MJ: Developmental plasticity and the origin of species differences. Proc Natl Acad Sci USA. 2005, 102: 6543-6549. 10.1073/pnas.0501844102.
PubMed
CAS
PubMed Central
Google Scholar
Crispo E: Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. J Evol Biol. 2008, 21: 1460-1469. 10.1111/j.1420-9101.2008.01592.x.
PubMed
CAS
Google Scholar
Martínez-Fernández M, Páez de la Cadena M, Rolán-Alvarez E: The role of phenotypic plasticity on the proteome differences between two sympatric marine snail ecotypes adapted to distinct micro-habitats. BMC Evol Biol. 2010, 10: 65-10.1186/1471-2148-10-65.
PubMed
PubMed Central
Google Scholar
Prada C, Schizas NV, Yoshioka PM: Phenotypic plasticity or speciation?. A case from a clonal marine organism. BMC Evol Biol. 2008, 8: 47-
PubMed
Google Scholar
Beldade P, Mateus AR, Keller RA: Evolution and molecular mechanisms of adaptive developmental plasticity. Mol Ecol. 2010, 20: 1347-1363.
Google Scholar
Moczek AP, Sultan S, Foster S, Ledón-Rettig C, Dworkin I, Nijhout HF, Abouheif E, Pfennig DW: The role of developmental plasticity in evolutionary innovation. Proc R Soc B. 2011, 278: 2705-2713. 10.1098/rspb.2011.0971.
PubMed
PubMed Central
Google Scholar
Espinosa-Soto C, Martin OC, Wagner A: Phenotypic plasticity can facilitate adaptive evolution in gene regulatory circuits. BMC Evol Biol. 2011, 11: 5-10.1186/1471-2148-11-5.
PubMed
PubMed Central
Google Scholar
Scoville AG, Pfrender ME: Phenotypic plasticity facilitates recurrent rapid adaptation to introduced predators. Proc Natl Acad Sci USA. 2010, 107: 4260-4263. 10.1073/pnas.0912748107.
PubMed
CAS
PubMed Central
Google Scholar
Aubin-Horth N, Renn SC: Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity. Mol Ecol. 2009, 18: 3763-3780. 10.1111/j.1365-294X.2009.04313.x.
PubMed
CAS
Google Scholar
Krupnova TN: Development of sporogenous tissue in Laminaria japonica under the influence of changing environment. Izv TINRO. 2002, 130: 474-482.
Google Scholar