Essigmann B, Guler S, Narang RA, Linke D, Benning C: Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA. 1998, 95: 1950-1955. 10.1073/pnas.95.4.1950.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hartel H, Essigmann B, Lokstein H, Hoffmann-Benning S, Peters-Kottig M, Benning C: The phospholipid-deficient pho1 mutant of Arabidopsis thaliana is affected in the organization, but not in the light acclimation, of the thylakoid membrane. Biochim Biophys Acta. 1998, 1415: 205-218. 10.1016/S0005-2736(98)00197-7.
Article
PubMed
CAS
Google Scholar
Sugimoto K, Sato N, Tsuzuki M: Utilization of a chloroplast membrane sulfolipid as a major internal sulfur source for protein synthesis in the early phase of sulfur starvation in Chlamydomonas reinhardtii. FEBS Lett. 2007, 581: 4519-4522. 10.1016/j.febslet.2007.08.035.
Article
PubMed
CAS
Google Scholar
Yu B, Xu C, Benning C: Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci USA. 2002, 99: 5732-5737. 10.1073/pnas.082696499.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gojon A, Nacry P, Davidian JC: Root uptake regulation: a central process for NPS homeostasis in plants. Curr Opin Plant Biol. 2009, 12: 328-338. 10.1016/j.pbi.2009.04.015.
Article
PubMed
CAS
Google Scholar
Smith FW, Rae AL, Hawkesford MJ: Molecular mechanisms of phosphate and sulphate transport in plants. Biochim Biophys Acta. 2000, 1465: 236-245. 10.1016/S0005-2736(00)00141-3.
Article
PubMed
CAS
Google Scholar
Hawkesford MJ, Davidian JC, Grignon C: Sulphate/proton cotransport in plasma-membrane vesicles isolated from roots of Brassica napus L.: increased transport in membranes isolated from sulphur-starved plants. Planta. 1993, 190: 297-307. 10.1007/BF00196957.
Article
CAS
Google Scholar
Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT: Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci USA. 1995, 92: 9373-9377. 10.1073/pnas.92.20.9373.
Article
PubMed
CAS
PubMed Central
Google Scholar
Buchner P, Takahashi H, Hawkesford MJ: Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot. 2004, 55: 1765-1773. 10.1093/jxb/erh206.
Article
PubMed
CAS
Google Scholar
Shibagaki N, Rose A, McDermott J, Fujiwara T, Hayashi H, Yoneyama T, Davies J: Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J. 2002, 29: 475-486. 10.1046/j.0960-7412.2001.01232.x.
Article
PubMed
CAS
Google Scholar
Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K: Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J. 2002, 29: 465-473. 10.1046/j.0960-7412.2001.01231.x.
Article
PubMed
CAS
Google Scholar
Yoshimoto N, Inoue E, Saito K, Yamaya T, Takahashi H: Phloem-localizing sulfate transporter, Sultr1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis. Plant Physiol. 2003, 131: 1511-1517. 10.1104/pp.014712.
Article
PubMed
CAS
PubMed Central
Google Scholar
Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K: The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J. 2000, 23: 171-182. 10.1046/j.1365-313x.2000.00768.x.
Article
PubMed
CAS
Google Scholar
Kataoka T, Hayashi N, Yamaya T, Takahashi H: Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiol. 2004, 136: 4198-4204. 10.1104/pp.104.045625.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zuber H, Davidian JC, Aubert G, Aimé D, Baelghazi AM, Lugan R, Heintz D, Wirtz M, Hell R, Thompson R, et al: The seed composition of Arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seeds. Plant Physiol. 2010, 154: 913-926. 10.1104/pp.110.162123.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H: Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell. 2004, 16: 2693-2704. 10.1105/tpc.104.023960.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zuber H, Davidian JC, Wirtz M, Hell R, Belghazi M, Thompson R, Gallardo K: Sultr4;1 mutant seeds of Arabidopsis have an enhanced sulphate content and modified proteome suggesting metabolic adaptations to altered sulphate compartmentalization. BMC Plant Biol. 2010, 10: 78-10.1186/1471-2229-10-78.
Article
PubMed
PubMed Central
Google Scholar
Tomatsu H, Takano J, Takahashi H, Watanabe-Takahashi A, Shibagaki N, Fujiwara T: An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proc Natl Acad Sci USA. 2007, 104: 18807-18812. 10.1073/pnas.0706373104.
Article
PubMed
CAS
PubMed Central
Google Scholar
Davidian JC, Kopriva S: Regulation of sulfate uptake and assimilation- the same or not the same?. Mol Plant. 2010, 3: 314-325. 10.1093/mp/ssq001.
Article
PubMed
CAS
Google Scholar
Rouached H, Wirtz M, Alary R, Hell R, Arpat AB, Davidian JC, Fourcroy P, Berthomieu P: Differential regulation of the expression of two high-affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis. Plant Physiol. 2008, 147: 897-911. 10.1104/pp.108.118612.
Article
PubMed
CAS
PubMed Central
Google Scholar
Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H: Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell. 2006, 18: 3235-3251. 10.1105/tpc.106.046458.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jones-Rhoades MW, Bartel DP: Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell. 2004, 14: 787-799. 10.1016/j.molcel.2004.05.027.
Article
PubMed
CAS
Google Scholar
Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T: Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J. 2009, 57: 313-321. 10.1111/j.1365-313X.2008.03690.x.
Article
PubMed
CAS
Google Scholar
Liang G, Yang F, Yu D: MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J. 2010, 62: 1046-1057.
PubMed
CAS
Google Scholar
Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J: A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev. 2001, 15: 2122-2133. 10.1101/gad.204401.
Article
PubMed
CAS
PubMed Central
Google Scholar
Devaiah BN, Karthikeyan AS, Raghothama KG: WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol. 2007, 143: 1789-1801. 10.1104/pp.106.093971.
Article
PubMed
CAS
PubMed Central
Google Scholar
Devaiah BN, Nagarajan VK, Raghothama KG: Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol. 2007, 145: 147-159. 10.1104/pp.107.101691.
Article
PubMed
CAS
PubMed Central
Google Scholar
Devaiah BN, Madhuvanthi R, Karthikeyan AS, Raghothama KG: Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Mol Plant. 2009, 2: 43-58. 10.1093/mp/ssn081.
Article
PubMed
CAS
PubMed Central
Google Scholar
Franco-Zorrilla JM, Gonzalez E, Bustos R, Linhares F, Leyva A, Paz-Ares J: The transcriptional control of plant responses to phosphate limitation. J Exp Bot. 2004, 55: 285-293. 10.1093/jxb/erh009.
Article
PubMed
CAS
Google Scholar
Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S, Poirier Y: Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Plant J. 2007, 50: 982-994. 10.1111/j.1365-313X.2007.03108.x.
Article
PubMed
CAS
Google Scholar
Nilsson L, Muller R, Nielsen TH: Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ. 2007, 30: 1499-1512. 10.1111/j.1365-3040.2007.01734.x.
Article
PubMed
CAS
Google Scholar
Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ: pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a miR399 target gene. Plant Physiol. 2006, 141: 1000-1011. 10.1104/pp.106.078063.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bari RP, Pant BD, Stitt M, Scheible WR: PHO2, micro RNA399 and PHR1 define a phosphate signalling pathway in plants. Plant Physiol. 2006, 141: 988-999. 10.1104/pp.106.079707.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, Chiou TJ: Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol. 2008, 147: 732-746. 10.1104/pp.108.116269.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pant BD, Buhtz A, Kehr J, Scheible WR: MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J. 2008, 53: 731-738. 10.1111/j.1365-313X.2007.03363.x.
Article
PubMed
CAS
PubMed Central
Google Scholar
Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, et al: The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA. 2005, 102: 7760-7765. 10.1073/pnas.0500778102.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bustos R, G C, Linhares F, Puga MI, Rubio V, Pérez-Pérez J, Solano R, Leyva A, Paz-Ares J: A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PloS Genet. 2010, 6: e1001102-10.1371/journal.pgen.1001102.
Article
PubMed
PubMed Central
Google Scholar
Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, et al: A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA. 2005, 102: 11934-11939. 10.1073/pnas.0505266102.
Article
PubMed
CAS
PubMed Central
Google Scholar
Müller R, Morant M, Jarmer H, Nilsson L, Nielsen TH: Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiol. 2007, 143: 156-171.
Article
PubMed
PubMed Central
Google Scholar
Thibaud MC, Arrighi JF, Bayle V, Chiazenza S, Creff A, Bustos R, Paz-Ares J, Poirier Y, Nussaume L: Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant J. 2010, 64: 775-789. 10.1111/j.1365-313X.2010.04375.x.
Article
PubMed
CAS
Google Scholar
Moseley JL, Gonzalez-Ballester D, Pootakham W, Bailey S, Grossman AR: Genetic interactions between regulators of Chlamydomonas phosphorus and sulfur deprivation responses. Genetics. 2009, 181: 889-905. 10.1534/genetics.108.099382.
Article
PubMed
CAS
PubMed Central
Google Scholar
O'Connell KF, Baker RE: Possible cross-regulation of phosphate and sulfate metabolism in Saccharomyces cerevisiae. Genetics. 1992, 132: 63-73.
PubMed
PubMed Central
Google Scholar
Saldanha AJ, Brauer MJ, Botstein D: Nutritional homeostasis in batch and steady-state culture of yeast. Mol Biol Cell. 2004, 15: 4089-4104. 10.1091/mbc.E04-04-0306.
Article
PubMed
CAS
PubMed Central
Google Scholar
Morcuende R, Bari RP, Gibon Y, KZheng W, Datt Pant B, Bläsing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, et al: Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ. 2007, 30: 85-112. 10.1111/j.1365-3040.2006.01608.x.
Article
PubMed
CAS
Google Scholar
Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, Rahn C, Swarup R, Woolaway KE, White PJ: Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol. 2003, 132: 578-586. 10.1104/pp.103.020941.
Article
PubMed
CAS
PubMed Central
Google Scholar
Poirier Y, Thoma S, Somerville C, Schiefelbein J: A mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol. 1991, 97: 1087-1093. 10.1104/pp.97.3.1087.
Article
PubMed
CAS
PubMed Central
Google Scholar
Carswell C, Grant BR, Theodorou ME, Harris J, Niere JO, Plaxton WC: The fungicide phosphonate disrupts the phosphate-starvation response in Brassica nigra seedlings. Plant Physiol. 1996, 110: 105-110.
PubMed
CAS
PubMed Central
Google Scholar
Carswell MC, Grant BR, Plaxton WC: Disruption of the phosphate-starvation response of oilseed rape suspension cells by the fungicide phosphonate. Planta. 1997, 203: 67-74.
Article
PubMed
CAS
Google Scholar
Ticconi CA, Delatorre CA, Abel S: Attenuation of phosphate starvation responses by phosphite in Arabidopsis. Plant Physiol. 2001, 127: 963-972. 10.1104/pp.010396.
Article
PubMed
CAS
PubMed Central
Google Scholar
Varadarajan DK, Karthikeyan AS, Matilda PD, Raghothama KG: Phosphite, an analog of phosphate, suppresses the coordinated expression of genes under phosphate starvation. Plant Physiol. 2002, 129: 1232-1240. 10.1104/pp.010835.
Article
PubMed
CAS
PubMed Central
Google Scholar
Poirier Y, Bucher M: Phosphate transport and homeostasis in Arabidopsis. The Arabidopsis Book. Edited by: Somerville CR, Meyerowitz EM. American Society of Plant Biologists, Rockville, MD, [http://www.bioone.org/doi/full/10.1043/tab.00024]
Kandlbinder A, Finkemeier I, Wormuth D, Hanitzsch M, Dietz K: The antioxidant status of photosynthesizing leaves under nutrient deficiency: redox regulation, gene expression and antioxidant activity in Arabidopsis thaliana. Physiol Plant. 2004, 120: 63-73. 10.1111/j.0031-9317.2004.0272.x.
Article
PubMed
CAS
Google Scholar
Rouached H, Stefanovic A, Secco D, Arpat B, Gout E, Bligny R, Poirier Y: Uncoupling phosphate deficiency from its major effects on growth and transcriptome via PHO1 expression in Arabidopsis. Plant J. 2010,
Google Scholar
Ribot C, Wang Y, Poirier Y: Expression analyses of three members of the AtPHO1 family reveal differential interactions between signaling pathways involved in phosphate deficiency and the response to auxin, cytokinin and abscisic acid. Planta. 2008, 227: 1025-1036. 10.1007/s00425-007-0677-x.
Article
PubMed
CAS
Google Scholar
Gaude N, Nakamura Y, Scheible WR, Ohta H, Dormann P: Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J. 2008, 56: 28-39. 10.1111/j.1365-313X.2008.03582.x.
Article
PubMed
CAS
Google Scholar
Hirsch J, Marin E, Floriani M, Chiarenza S, Richaud P, Nussaume L, Thibaud MC: Phosphate deficiency promotes modification of iron distribution in Arabidopsis plants. Biochimie. 2006, 88: 1767-1771. 10.1016/j.biochi.2006.05.007.
Article
PubMed
CAS
Google Scholar
Nocito FF, Pirovano L, Cocucci M, Sacchi GA: Cadmium-induced sulfate uptake in maize roots. Plant Physiol. 2002, 129: 1872-1879. 10.1104/pp.002659.
Article
PubMed
CAS
PubMed Central
Google Scholar
Karthikeyan A, Ballachanda D, Raghothama K: Promoter deletion analysis elucidates the role of cis elements and 5'UTR intron in spatiotemporal regulation of AtPht1;4 expression in Arabidopsis. Physiol Plant. 2009, 136: 10-18. 10.1111/j.1399-3054.2009.01207.x.
Article
PubMed
CAS
Google Scholar
Hsieh L, Lin S, Shih A, Chen J, Lin W, Tseng C, Li W, Chiou T: Uncovering small RNA-mediated responses to phosphate-deficiency in Arabidopsis by deep sequencing. Plant Physiol. 2009, 151: 2120-2132. 10.1104/pp.109.147280.
Article
PubMed
PubMed Central
Google Scholar
Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, et al: The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acid Res. 2008, 36: D1009-D1014. 10.1093/nar/gkm965.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C-T method. Nat Protoc. 2008, 3: 1101-1108. 10.1038/nprot.2008.73.
Article
PubMed
CAS
Google Scholar
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, et al: Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 2003, 301: 653-657. 10.1126/science.1086391.
Article
PubMed
Google Scholar