Gusta LV, Willen R, Fu P, Robertson AJ, Wu GH: Genetic and environmental control of winter survival of winter cereals. Acta Agron Acad Sci Hung. 1997, 45 (3): 231-240.
Google Scholar
Chinnusamy V, Zhu J, Zhu JK: Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007, 12 (10): 444-451. 10.1016/j.tplants.2007.07.002.
Article
PubMed
CAS
Google Scholar
Saulescu NN, Braun HJ: Cold tolerance. In Application of physiology in wheatbreeding. Edited by: Reynolds MP, Ortiz-Monasterio JI, McNab A. Mexico, D.F:CIMMYT; 2001:111-123.
Google Scholar
Fowler DB, Limin AE: Exploitable genetic variability for cold tolerance in commercially grown cereals. Can J Plant Sci. 1987, 67 (1): 278-278.
Google Scholar
Hömmö LM: Hardening of some winter wheat (Triticum aestivum L.), rye (Secale cereals L.), triticale (Triticosecale Wittmack) and winter barley (Hordeum vulgare L.) cultivars during autumn and the final winter survival in Finland. Plant Breed. 1994, 112 (4): 285-293. 10.1111/j.1439-0523.1994.tb00686.x.
Article
Google Scholar
Thomashow MF: Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Phys. 1999, 50: 571-599. 10.1146/annurev.arplant.50.1.571.
Article
CAS
Google Scholar
Fowler DB, Gusta LV, Tyler NJ: Selection for winterhardiness in wheat. III. Screening methods. Crop Sci. 1981, 21 (6): 896-901. 10.2135/cropsci1981.0011183X002100060023x.
Article
CAS
Google Scholar
Dorffling K, Schulenburg S, Lesselich G, Dorffling H: Abscisic acid and proline levels in cold hardened winter wheat leaves in relation to variety-specific differences in freezing resistance. J Agron Crop Sci. 1990, 165 (4): 230-239. 10.1111/j.1439-037X.1990.tb00857.x.
Article
Google Scholar
Houde M, Dhindsa RS, Sarhan F: A molecular marker to select for freezing tolerance in Gramineae. Mol Gen Genet. 1992, 234 (1): 43-48.
PubMed
CAS
Google Scholar
Hannah MA, Heyer AG, Hincha DK: A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. Plos Genet. 2005, 1 (2): 179-196.
Article
CAS
Google Scholar
Kreps JA, Wu YJ, Chang HS, Zhu T, Wang X, Harper JF: Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 2002, 130 (4): 2129-2141. 10.1104/pp.008532.
Article
PubMed
CAS
PubMed Central
Google Scholar
Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF: Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J. 2005, 41 (2): 195-211.
Article
PubMed
CAS
Google Scholar
Monroy AF, Dryanova A, Malette B, Oren DH, Farajalla MR, Liu W, Danyluk J, Ubayasena LWC, Kane K, Scoles GJ, et al: Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat. Plant Mol Biol. 2007, 64 (4): 409-423. 10.1007/s11103-007-9161-z.
Article
PubMed
CAS
Google Scholar
Winfield MO, Lu CG, Wilson ID, Coghill JA, Edwards KJ: Plant responses to cold: transcriptome analysis of wheat. Plant Biotech J. 2010, 8 (7): 749-771. 10.1111/j.1467-7652.2010.00536.x.
Article
CAS
Google Scholar
Kosova K, Vitamvas P, Prasil IT: The role of dehydrins in plant response to cold. Biol Plant. 2007, 51 (4): 601-617. 10.1007/s10535-007-0133-6.
Article
CAS
Google Scholar
Moellering ER, Muthan B, Benning C: Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science. 2010, 330 (6001): 226-228. 10.1126/science.1191803.
Article
PubMed
CAS
Google Scholar
Choi DW, Zhu B, Close TJ: The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor Appl Genet. 1999, 98 (8): 1234-1247. 10.1007/s001220051189.
Article
CAS
Google Scholar
Zhu B, Choi DW, Fenton R, Close TJ: Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol Gen Genet. 2000, 264 (1-2): 145-153. 10.1007/s004380000299.
Article
PubMed
CAS
Google Scholar
Yamaguchi-Shinozaki K, Shinozaki K: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 2006, 57: 781-803. 10.1146/annurev.arplant.57.032905.105444.
Article
PubMed
CAS
Google Scholar
Francia E, Barabaschi D, Tondelli A, Laido G, Rizza F, Stanca AM, Busconi M, Fogher C, Stockinger EJ, Pecchioni N: Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet. 2007, 115 (8): 1083-1091. 10.1007/s00122-007-0634-x.
Article
PubMed
CAS
Google Scholar
Baga M, Chodaparambil SV, Limin AE, Pecar M, Fowler DB, Chibbar RN: Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct Integr Genomics. 2007, 7 (1): 53-68.
Article
PubMed
CAS
Google Scholar
Knox AK, Li CX, Vagujfalvi A, Galiba G, Stockinger EJ, Dubcovsky J: Identification of candidate CBF genes for the frost tolerance locus Fr-A(m)2 in Triticum monococcum. Plant Mol Biol. 2008, 67 (3): 257-270. 10.1007/s11103-008-9316-6.
Article
PubMed
CAS
Google Scholar
Alm V, Busso CS, Ergon A, Rudi H, Larsen A, Humphreys MW, Rognli OA: QTL analyses and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue (Festuca pratensis Huds.). Theor Appl Genet. 2011, 123 (3): 369-382. 10.1007/s00122-011-1590-z.
Article
PubMed
Google Scholar
Campoli C, Matus-Cadiz MA, Pozniak CJ, Cattivelli L, Fowler DB: Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures. Mol Genet Genomics. 2009, 282 (2): 141-152. 10.1007/s00438-009-0451-9.
Article
PubMed
CAS
PubMed Central
Google Scholar
Badawi M, Reddy YV, Agharbaoui Z, Tominaga Y, Danyluk J, Sarhan F, Houde M: Structure and functional analysis of wheat ICE (inducer of CBF expression) genes. Plant Cell Physio. 2008, 49 (8): 1237-1249. 10.1093/pcp/pcn100.
Article
CAS
Google Scholar
Fursova OV, Pogorelko GV, Tarasov VA: Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene. 2009, 429 (1-2): 98-103. 10.1016/j.gene.2008.10.016.
Article
PubMed
CAS
Google Scholar
Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL: Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol. 2004, 136 (4): 4159-4168. 10.1104/pp.104.052142.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cook D, Fowler S, Fiehn O, Thomashow MF: A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA. 2004, 101 (42): 15243-15248. 10.1073/pnas.0406069101.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tester M, Langridge P: Breeding technologies to increase crop production in a changing world. Science. 2010, 327 (5967): 818-822. 10.1126/science.1183700.
Article
PubMed
CAS
Google Scholar
Rafalski A: Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol. 2002, 5 (2): 94-100. 10.1016/S1369-5266(02)00240-6.
Article
PubMed
CAS
Google Scholar
Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES: Dwarf8 polymorphisms associate with variation in flowering time. Nature Genet. 2001, 28 (3): 286-289. 10.1038/90135.
Article
PubMed
CAS
Google Scholar
Zhao K, Aranzana M, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, et al: An Arabidopsis example of association mapping in structured samples. Plos Genet. 2007, 3: e4-10.1371/journal.pgen.0030004.
Article
PubMed
PubMed Central
Google Scholar
Malosetti M, van der Linden CG, Vosman B, van Eeuwijk FA: A mixed-model approach to association mapping using pedigree information with an illustration of resistance to Phytophthora infestans in potato. Genetics. 2007, 175 (2): 879-889. 10.1534/genetics.105.054932.
Article
PubMed
CAS
PubMed Central
Google Scholar
Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, et al: Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science. 2008, 319 (5861): 330-333. 10.1126/science.1150255.
Article
PubMed
CAS
PubMed Central
Google Scholar
Aranzana MJ, Kim S, Zhao KY, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang CL, et al: Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet. 2005, 1 (5): 531-539.
Article
CAS
Google Scholar
Devlin B, Roeder K: Genomic control for association studies. Biometrics. 1999, 55: 997-1004. 10.1111/j.0006-341X.1999.00997.x.
Article
PubMed
CAS
Google Scholar
Pritchard JK, Stephens M, Rosenberg NA, Donnelly P: Association mapping in structured populations. Am J Hum Genet. 2000, 67 (1): 170-181. 10.1086/302959.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, et al: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genet. 2006, 38 (2): 203-208. 10.1038/ng1702.
Article
PubMed
CAS
Google Scholar
Stich B, Möhring J, Piepho HP, Heckenberger M, Buckler ES, Melchinger AE: Comparison of mixed-model approaches for association mapping. Genetics. 2008, 178 (3): 1745-1754. 10.1534/genetics.107.079707.
Article
PubMed
PubMed Central
Google Scholar
Rogowsky PM, Guidet FLY, Langridge P, Shepherd KW, Koebner RMD: Isolation and characterisation of wheat-rye recombinants involving chromosome arm 1DS of wheat. Theor Appl Genet. 1991, 82 (5): 537-544.
Article
PubMed
CAS
Google Scholar
Vagujfalvi A, Galiba G, Cattivelli L, Dubcovsky J: The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Mol Genet Genomics. 2003, 269 (1): 60-67.
PubMed
CAS
Google Scholar
Fitzmaurice GM, Laird NM, Ware JH: Applied longitudinal analysis. 2004, New Jersey: John Wiley & Sons
Google Scholar
Li YL, Haseneyer G, Schön CC, Ankerst D, Korzun V, Wilde P, Bauer E: High levels of nucleotide diversity and fast decline of linkage disequilibrium in rye (Secale cereale L.) genes involved in frost response. BMC Plant Biol. 2011, 11: 6-10.1186/1471-2229-11-6.
Article
PubMed
PubMed Central
Google Scholar
Khlestkina EK, Ma HMT, Pestsova EG, Roder MS, Malyshev SV, Korzun V, Börner A: Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor Appl Genet. 2004, 109 (4): 725-732. 10.1007/s00122-004-1659-z.
Article
PubMed
CAS
Google Scholar
Hackauf B, Wehling P: Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed. 2002, 121 (1): 17-25. 10.1046/j.1439-0523.2002.00649.x.
Article
CAS
Google Scholar
Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics. 2000, 155 (2): 945-959.
PubMed
CAS
PubMed Central
Google Scholar
Hayes BJ, Goddard ME: Technical note: Prediction of breeding values using marker-derived relationship matrices. J Anim Sci. 2008, 86 (9): 2089-2092. 10.2527/jas.2007-0733.
Article
PubMed
CAS
Google Scholar
Galiba G, Quarrie SA, Sutka J, Morgounov A, Snape JW: RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet. 1995, 90 (7-8): 1174-1179.
Article
PubMed
CAS
Google Scholar
Bates D, Maechler M: lme4: Linear mixed-effects models using S4 classes. R package version 0999375-35. 2010
Google Scholar
R Development Core Team: R: A language and environment for statistical computing. 2009, Vienna: R Foundation for Statistical Computing
Google Scholar
Mathews KL, Malosetti M, Chapman S, McIntyre L, Reynolds M, Shorter R, van Eeuwijk F: Multi-environment QTL mixed models for drought stress adaptation in wheat. Theor Appl Genet. 2008, 117 (7): 1077-1091. 10.1007/s00122-008-0846-8.
Article
PubMed
Google Scholar
Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R: DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 2003, 19 (18): 2496-2497. 10.1093/bioinformatics/btg359.
Article
PubMed
CAS
Google Scholar
Stockinger EJ, Skinner JS, Gardner KG, Francia E, Pecchioni N: Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. Plant J. 2007, 51 (2): 308-321. 10.1111/j.1365-313X.2007.0141.x.
Article
PubMed
CAS
Google Scholar
Fricano A, Rizza F, Faccioli P, Pagani D, Pavan P, Stella A, Rossini L, Piffanelli P, Cattivelli L: Genetic variants of HvCbf14 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare. Theor Appl Genet. 2009, 119 (7): 1335-1348. 10.1007/s00122-009-1138-7.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fowler S, Thomashow MF: Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell. 2002, 14 (8): 1675-1690. 10.1105/tpc.003483.
Article
PubMed
CAS
PubMed Central
Google Scholar
McKhann HI, Gery C, Berard A, Leveque S, Zuther E, Hincha DK, De Mita S, Brunel D, Teoule E: Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. BMC Plant Biol. 2008, 8: 105-10.1186/1471-2229-8-105.
Article
PubMed
PubMed Central
Google Scholar
Zhu JH, Shi HZ, Lee BH, Damsz B, Cheng S, Stirm V, Zhu JK, Hasegawa PM, Bressan RA: An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci USA. 2004, 101 (26): 9873-9878. 10.1073/pnas.0403166101.
Article
PubMed
CAS
PubMed Central
Google Scholar
Xue GP, Loveridge CW: HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J. 2004, 37 (3): 326-339.
Article
PubMed
CAS
Google Scholar
Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S: Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst. 2006, 81 (2): 77-91. 10.1266/ggs.81.77.
Article
PubMed
CAS
Google Scholar
Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LSP, Shinozaki K, Yamaguchi-Shinozaki K: Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J. 2007, 50 (1): 54-69. 10.1111/j.1365-313X.2007.03034.x.
Article
PubMed
CAS
Google Scholar
Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K: OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-, and cold-responsive gene expression. Plant J. 2003, 33 (4): 751-763. 10.1046/j.1365-313X.2003.01661.x.
Article
PubMed
CAS
Google Scholar
Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 1998, 10 (8): 1391-1406.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mackay TFC: The genetic architecture of quantitative traits. Annual Review of Genetics. 2001, 35: 303-339. 10.1146/annurev.genet.35.102401.090633.
Article
PubMed
CAS
Google Scholar
Ingvarsson PK, Street NR: Association genetics of complex traits in plants. New Phytol. 2010, 189 (4): 909-922.
Article
PubMed
Google Scholar
Flint J, Mackay TFC: Genetic architecture of quantitative traits in mice, flies, and humans. Genome Research. 2009, 19 (5): 723-733. 10.1101/gr.086660.108.
Article
PubMed
CAS
PubMed Central
Google Scholar
Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, et al: The genetic architecture of maize flowering time. Science. 2009, 325 (5941): 714-718. 10.1126/science.1174276.
Article
PubMed
CAS
Google Scholar
Bateson W: Mendel's principles of heredity. 1909, Cambridge: Cambridge University Press
Chapter
Google Scholar
Phillips PC: Epistasis - the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet. 2008, 9 (11): 855-867. 10.1038/nrg2452.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wu XS, Dong H, Luo L, Zhu Y, Peng G, Reveille JD, Xiong MM: A novel statistic for genome-wide interaction analysis. PLoS Genet. 2010, 6 (9): e1001131-10.1371/journal.pgen.1001131.
Article
PubMed
PubMed Central
Google Scholar
Li L, Paulo MJ, van Eeuwijk F, Gebhardt C: Statistical epistasis between candidate gene alleles for complex tuber traits in an association mapping population of tetraploid potato. Theor Appl Genet. 2010, 121 (7): 1303-1310. 10.1007/s00122-010-1389-3.
Article
PubMed
CAS
PubMed Central
Google Scholar
Stracke S, Haseneyer G, Veyrieras JB, Geiger HH, Sauer S, Graner A, Piepho HP: Association mapping reveals gene action and interactions in the determination of flowering time in barley. Theor Appl Genet. 2009, 118 (2): 259-273. 10.1007/s00122-008-0896-y.
Article
PubMed
CAS
Google Scholar
Manicacci D, Camus-Kulandaivelu L, Fourmann M, Arar C, Barrault S, Rousselet A, Feminias N, Consoli L, Frances L, Mechin V, et al: Epistatic interactions between Opaque2 transcriptional activator and its target gene CyPPDK1 control kernel trait variation in maize. Plant Physiol. 2009, 150 (1): 506-520. 10.1104/pp.108.131888.
Article
PubMed
CAS
PubMed Central
Google Scholar
Novillo F, Alonso JM, Ecker JR, Salinas J: CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in, stress tolerance in Arabidopsis. Proc Natl Acad Sci USA. 2004, 101 (11): 3985-3990. 10.1073/pnas.0303029101.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dhanaraj AL, Alkharouf NW, Beard HS, Chouikha IB, Matthews BF, Wei H, Arora R, Rowland LJ: Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions. Planta. 2007, 225 (3): 735-751. 10.1007/s00425-006-0382-1.
Article
PubMed
CAS
Google Scholar