Bhatia P, Ashwath N, Senaratna T, David M: Tissue culture studies of tomato (Lycopersicon esculentum). Plant Cell Tissue Organ Cult. 2004, 78: 1-21.
Article
Google Scholar
Engelmann F: In vitro conservation of tropical plant germplasm. Euphytica. 1991, 57: 227-243. 10.1007/BF00039669.
Article
Google Scholar
Benson EE: Special symposium: In vitro plant recalcitrance: An introduction. In Vitro Cell Dev Biol Plant. 2000, 36: 141-148. 10.1007/s11627-000-0029-z.
Article
Google Scholar
Hamza S, Chupeau Y: Re-evaluation of conditions for plant regeneration and Agrobacterium-mediated transformation from tomato (Lycopersicon esculentum). J Exp Bot. 1993, 44: 1837-1845. 10.1093/jxb/44.12.1837.
Article
CAS
Google Scholar
Frary A, Earle ED: An examination of factors affecting the efficiency of Agrobacterium-mediated transformation of tomato. Plant Cell Rep. 1996, 16: 235-240.
PubMed
CAS
Google Scholar
Peres LEP, Morgante PG, Vecchi C, Kraus JE, Sluys MAv: Shoot regeneration capacity from roots and transgenic hairy roots of tomato cultivars and wild related species. Plant Cell Tissue Organ Cult. 2001, 65: 37-44. 10.1023/A:1010631731559.
Article
CAS
Google Scholar
Koornneef M, Hanhart CJ, Martinelli L: A genetic analysis of cell culture traits in tomato. Theor Appl Genet. 1987, 74: 633-641. 10.1007/BF00288863.
Article
PubMed
CAS
Google Scholar
Wijbrandi J, Vos JGM, Koornneef M: Transfer of regeneration capacity from Lycopersicon peruvianum to L. esculentum by protoplast fusion. Plant Cell Tissue Organ Cult. 1988, 12: 193-196. 10.1007/BF00040085.
Article
Google Scholar
Takashina T, Suzuki T, Egashira H, Imanishi S: New molecular markers linked with the high shoot regeneration capacity of the wild tomato species Lycopersicon chilense. Breed Sci. 1998, 48: 109-113. 10.1270/jsbbs1951.48.109.
Google Scholar
Faria RT, Destro D, Bespalhok JC, Illg RD: Introgression of in vitro regeneration capability of Lycopersicon pimpinellifolium Mill. into recalcitrant tomato cultivars. Euphytica. 2002, 124: 59-63. 10.1023/A:1015693902836.
Article
Google Scholar
Sugiyama M: Organogenesis in vitro. Curr Opin Plant Biol. 1999, 2: 61-64. 10.1016/S1369-5266(99)80012-0.
Article
PubMed
CAS
Google Scholar
Zhang S, Lemaux PG: Molecular analysis of in vitro shoot organogenesis. Crit Rev Plant Sci. 2004, 23: 325-335. 10.1080/07352680490484569.
Article
CAS
Google Scholar
Hemerly AS, Ferreira P, de Almeida Engler J, Van Montagu M, Engler G, Inze D: cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell. 1993, 5: 1711-1723.
Article
PubMed
CAS
PubMed Central
Google Scholar
Skoog F, Miller CO: Chemical regulation of growth and organ formation in plant tissue cultures in vitro. Symp Soc Exp Biol. 1957, 11: 118-131.
PubMed
CAS
Google Scholar
Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T: Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature. 2001, 409: 1060-1063. 10.1038/35059117.
Article
PubMed
CAS
Google Scholar
Ueguchi C, Sato S, Kato T, Tabata S: The AHK4 gene involved in the cytokinin-signalling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant and Cell Physiology. 2001, 42: 751-755. 10.1093/pcp/pce094.
Article
PubMed
CAS
Google Scholar
Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C: Genetic analysis of Arabidopsis histidine kinase genes encoding cytokinin receptors reveals their overlapping biological functions in the regulation of shoot and root growth in Arabidopsis thaliana. Plant Cell. 2004, 16: 1365-1377. 10.1105/tpc.021477.
Article
PubMed
CAS
PubMed Central
Google Scholar
Banno H, Ikeda Y, Niu QW, Chua NH: Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell. 2001, 12: 2609-2618.
Article
Google Scholar
Ikeda Y, Banno H, Niu QW, Howell SH, Chua NH: The ENHANCER OF SHOOT REGENERATION 2 gene in Arabidopsis Regulates CUP-SHAPED COTYLEDON 1 at the transcriptional level and controls cotyledon development. Plant Cell Physiol. 2006, 47: 1443-1456. 10.1093/pcp/pcl023.
Article
PubMed
CAS
Google Scholar
Mase H, Hashiba M, Matsuo N, Banno H: Expression patterns of Arabidopsis ERF VIII-b subgroup genes during in vitro shoot regeneration and effects of their overexpression on shoot regeneration efficiency. Plant Biotechnol. 2007, 24: 481-486. 10.5511/plantbiotechnology.24.481.
Article
CAS
Google Scholar
Faria RT, Illg RD: Inheritance of in vitro plant regeneration ability in the tomato. Braz J Genet. 1996, 19: 113-116.
Google Scholar
Satoh H, Takashina T, Escalante A, Egashira H, Imanishi S: Molecular markers mapped around the high shoot regeneration capacity gene Rg-2 in Lycopersicon chilense. Breed Sci. 2000, 50 (4): 251-256.
Article
CAS
Google Scholar
Pratta G, Cánepa LN, Zorzoli R, Picardi LA: Diallel analysis of in vitro culture traits in the genus Lycopersicon. HortScience. 2003, 38: 110-112.
Google Scholar
Marchionni BE, Pratta GR, Zorzoli R: Genetic analysis of the in vitro culture response in tomato. Plant Cell Tissue Organ Cult. 2007, 88: 233-239. 10.1007/s11240-006-9195-y.
Article
Google Scholar
Koornneef M, Bade J, Hanhart C, Horsman K, Schel J, Soppe W, Vekerk R, Zabel P: Characterization and mapping of a gene controlling shoot regeneration in tomato. Plant J. 1993, 3: 131-141. 10.1111/j.1365-313X.1993.tb00016.x.
Article
CAS
Google Scholar
Torelli A, Soragni E, Bolchi A, Petrucco S: New potential markers of in vitro tomato morphogenesis identified by mRNA differential display. Plant Mol Biol. 1996, 32: 891-900. 10.1007/BF00020486.
Article
PubMed
CAS
Google Scholar
Torelli A, Soragni E, Borinato M, Branca C: The expression of LESK1 morphogenetic marker along the tomato hypocotyl axis is linked to a position-dependent competence for shoot regeneration. Plant Sci. 2004, 166 (1): 179-190. 10.1016/j.plantsci.2003.09.006.
Article
CAS
Google Scholar
Torelli A, Borinato M, Soragni E, Bolpagni R, Bottura C, Branca C: The delay in hormonal treatment modulates the expression of LESK1, a gene encoding a putative serine-threonine kinase, marker of in vitro caulogenesis in tomato (Lycopersicon esculentum Mill.). Plant Sci. 2004, 167 (3): 607-620. 10.1016/j.plantsci.2004.05.007.
Article
CAS
Google Scholar
Gisbert C, Arrillaga I, Roig LA, Moreno V: Adquisition of a collection of Lycopersicon pennellii (Corr. D'Arcy) transgenic plants with uidA and nptII marker genes. J Hortic Sci Biotechnol. 1999, 74 (1): 105-109.
Google Scholar
Eshed Y, Abu-Abied M, Saranga Y, Zamir D: Lycopersicon esculentum lines containing small overlapping introgressions from L. pennellii. Theor Appl Genet. 1992, 83: 1027-1034.
Article
PubMed
CAS
Google Scholar
Komatsuda T, Annaka T, Oka S: Genetic mapping of a quantitative trait locus (QTL) that enhances the shoot differentiation rate in Hordeum vulgare L. Theor Appl Genet. 1993, 86: 713-720.
Article
PubMed
CAS
Google Scholar
Taguchi-Shiobara F, Lin SY, Tanno K, Komatsuda T, Yano M, Sasaki T, Oka S: Mapping quantitative trait loci associated with regeneration ability of seed callus in rice, Oryza sativa L. Theor Appl Genet. 1997, 95: 828-833. 10.1007/s001220050632.
Article
CAS
Google Scholar
Flores Berrios E, Gentzbittel L, Mokrani L, Alibert G, Sarrafi A: Genetic control of early events in protoplast division and regeneration pathways in sunflower. Theor Appl Genet. 2000, 101: 606-612. 10.1007/s001220051522.
Article
Google Scholar
Bolibok H, Rakoczy-Trojanowska M: Genetic mapping of QTLs for tissue-culture response in plants. Euphytica. 2006, 149: 73-83. 10.1007/s10681-005-9055-6.
Article
CAS
Google Scholar
Molina RV, Nuez F: Respuesta correlacionada de la capacidad de regeneración en distintos tipos de explante en Cucumis melo. Actas Horticultura. 1989, 3: 111-118.
Google Scholar
Molina RV, Nuez F: Correlated response of in vitro regeneration capacity from different source of explants in Cucumis melo. Plant Cell Rep. 1995, 15: 129-132. 10.1007/BF01690269.
Article
PubMed
CAS
Google Scholar
Molina RV, Nuez F: Sexual transmission of the in vitro regeneration capacity via caulogenesis of Cucumis melo L. in a medium with a high auxin/cytokinin ratio. Sci Hortic. 1997, 70: 237-241. 10.1016/S0304-4238(97)00024-1.
Article
Google Scholar
Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, Sato S, ·Nakamura Y, ·Tabata S, Sasamoto S, Wada T, Kishida Y: An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor Appl Genet. 2010, 121: 731-739. 10.1007/s00122-010-1344-3.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhang L, Wang S, Li H, Deng Q, Zheng A, Li S, Li P, Li Z, Wang J: Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theor Appl Genet. 2010, 121: 1071-1082. 10.1007/s00122-010-1372-z.
Article
PubMed
Google Scholar
Chaerani R, Smulders MJ, van der Linden CG, Vosman B, Stam P, Voorrips RE: QTL identification for early blight resistance (Alternaria solani) in a Solanum lycopersicum x S. arcanum cross. Theor Appl Genet. 2006, 114: 439-450.
Article
PubMed
Google Scholar
de Vicente MC, Tanksley SD: QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics. 1993, 134: 585-596.
CAS
Google Scholar
Ben Amer IM, Korzun V, Worland AJ, Börner A: Genetic mapping of QTLs controlling tissue-culture response on chromosome 2B of wheat (Triticum aestivum L.) in relation to major genes and RFLP markers. Theor Appl Genet. 1997, 94: 1047-1052. 10.1007/s001220050513.
Article
CAS
Google Scholar
Schiantarelli E, De La Pena A, Candela M: Use of recombinant inbred lines (RILs) to identify, locate and map major genes and quantitative trait loci involved with in vitro regeneration ability in Arabidopsis thaliana. Theor Appl Genet. 2001, 102: 335-341. 10.1007/s001220051650.
Article
CAS
Google Scholar
Prakash AP, Kumar PP: PkMADS1 is a novel MADS box gene regulating adventitious shoot induction and vegetative shoot development in Paulownia kawakamii. Plant J. 2002, 29: 141-151. 10.1046/j.0960-7412.2001.01206.x.
Article
PubMed
CAS
Google Scholar
Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard GL, et al: Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes. 2008, 4 (3): 495-507. 10.1007/s11295-007-0126-9.
Article
Google Scholar
Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962, 15: 473-497. 10.1111/j.1399-3054.1962.tb08052.x.
Article
CAS
Google Scholar
Doyle JJ, Doyle JL: Isolation of plant DNA from fresh tissue. Focus. 1990, 12: 13-15.
Google Scholar
Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, et al: AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995, 23 (21): 4407-4414. 10.1093/nar/23.21.4407.
Article
PubMed
CAS
PubMed Central
Google Scholar
Frary A, Xu Y, Liu J, Mitchell S, Tedeschi E, Tanksley S: Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl Genet. 2005, 111: 291-312. 10.1007/s00122-005-2023-7.
Article
PubMed
CAS
Google Scholar
Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, et al: The SOL Genomics Network: a comparative resource for Solanaceae biology and beyond. Plant Physiol. 2005, 138: 1310-1317. 10.1104/pp.105.060707.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rozen S, Skaletsky HJ: Primer3 on the WWW for general users and forbiologist programmers. In Bioinformatics Methods and Protocols: Methods inMolecular Biology. Edited by: Krawetz S, Misener S. Totowa, NJ: HumanaPress; 2000:365-386.
Google Scholar
Schuelke M: An economic method for the fluorescent labelling of PCR fragments. Nature Biotechnology. 2000, 18: 233-234. 10.1038/72708.
Article
PubMed
CAS
Google Scholar
Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD: Identification, analysis and utilization of a conserved ortholog set markers for comparative genomics in Higher Plants. Plant Cell. 2002, 14: 1457-1467. 10.1105/tpc.010479.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wu F, Mueller LA, Crouzillat D, Petiard V, Tanksley SD: Combining Bioinformatics and Phylogenetics to Identify Large Sets of Single Copy, Orthologous Genes (COSII) for Comparative, Evolutinonary and Systematics Studies: A Test Case in the Euasterid Plant Clade. Genetics. 2006, 174 (3): 1407-1420. 10.1534/genetics.106.062455.
Article
PubMed
CAS
PubMed Central
Google Scholar
Van Ooijen JW: JoinMap 4, Software for the calculation of genetic linkagemaps in experimental populations Wageningen, Netherlands: Kyazma BV;2006.
Google Scholar
Voorrips RE: MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered. 2002, 93 (1): 77-78. 10.1093/jhered/93.1.77.
Article
PubMed
CAS
Google Scholar
Van Ooijen JW: MapQTL ® 6, Software for the mapping of quantitative traitloci in experimental populations of diploid species Wageningen, Netherlands:Kyazma BV; 2009.
Google Scholar
Harada S, Fukuta S, Tanaka H, Ishiguro Y, Sato T: Genetic analysis of the trait of sucrose accumulation in tomato fruit using molecular marker. Breeding Sci. 1995, 45: 429-434. 10.1270/jsbbs1951.45.429.
CAS
Google Scholar